Histone H3K9 demethylase JMJD2B/KDM4B promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating H3K9me2 on RUNX2

Author:

Kang Pan1,Wu Zhiming2,Huang Yuxi1,Luo Zhen1,Huo Shaochuan3,Chen Qunqun145

Affiliation:

1. Guangzhou University of Chinese Medicine, Guangzhou, China

2. University Medical Center Utrecht, Utrecht, Netherlands

3. Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China

4. The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China

5. Guangdong Research Institute for Orthopedics & Traumatology of Chinese Medicine, Guangzhou, China

Abstract

Background A variety of proteins including epigenetic factors are involved in the differentiation of human bone marrow mesenchymal stem cells. These cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment. Further in-depth study of their epigenetic alterations may make sense. Methods Chromatin Immunoprecipitation-PCR (ChIP-PCR) was used to detect the methylation enrichment status of H3K9me2 in the Runx2 promoter, alizarin red and alkaline phosphatase (ALP) staining were used to detect osteogenic differentiation and mineralization ability, western blot and quantitative RT-PCR were used to measure the differential expression of osteogenesis-related proteins and genes. Recombinant Lentivirus mediated gain-of-function and loss-of-function study. The scale of epigenetic modification was detected by laser confocal. Results Our results showed that compared with human bone marrow mesenchymal stem cells (hBMSCs) without osteogenic differentiation treatment, hBMSCs after osteogenic differentiation significantly promoted osteogenic differentiation and mRNA expression such as JMJD2B/KDM4B, osteogenesis-related genes like Runx2 and FAM210A in hBMSCs cells, suggesting that upregulation of JMJD2B/KDM4B is involved in the promoting effect of osteogenesis. After overexpression and silencing expression of JMJD2B, we found a completely opposite and significant difference in mRNA expression of osteogenesis-related genes and staining in hBMSCs. Overexpression of JMJD2B/KDM4B significantly promoted osteogenic differentiation, suggesting that JMJD2B/KDM4B could promote osteogenesis. In addition, ChIP-PCR showed that overexpression of JMJD2B/KDM4B significantly reversed the methylation enrichment status of H3K9me2 in Runx2 promoter. Furthermore, overexpression of JMJD2B/KDM4B significantly reverses the inhibitory effect of BIX01294 on H3K9me2, suggesting that JMJD2B/KDM4B regulates the osteogenic differentiation of hBMSCs by changing the methylation status of H3K9me2 at the Runx2 promoter. Conclusions Taken together, these results suggest that JMJD2B/ KDM4B may induce the osteogenic differentiation of hBMSCs by regulating the methylation level of H3K9me2 at the Runx2 promoter.

Funder

Natural Science Foundation of Guangdong Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3