YOLOv8s-CGF: a lightweight model for wheat ear Fusarium head blight detection

Author:

Yang Chengkai1,Sun Xiaoyun1,Wang Jian1,Lv Haiyan1,Dong Ping1ORCID,Xi Lei1,Shi Lei12

Affiliation:

1. College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan, China

2. Henan Grain Crop Collaborative Innovation Center, Henan Agricultural University, Zhengzhou, Henan, China

Abstract

Fusarium head blight (FHB) is a destructive disease that affects wheat production. Detecting FHB accurately and rapidly is crucial for improving wheat yield. Traditional models are difficult to apply to mobile devices due to large parameters, high computation, and resource requirements. Therefore, this article proposes a lightweight detection method based on an improved YOLOv8s to facilitate the rapid deployment of the model on mobile terminals and improve the detection efficiency of wheat FHB. The proposed method introduced a C-FasterNet module, which replaced the C2f module in the backbone network. It helps reduce the number of parameters and the computational volume of the model. Additionally, the Conv in the backbone network is replaced with GhostConv, further reducing parameters and computation without significantly affecting detection accuracy. Thirdly, the introduction of the Focal CIoU loss function reduces the impact of sample imbalance on the detection results and accelerates the model convergence. Lastly, the large target detection head was removed from the model for lightweight. The experimental results show that the size of the improved model (YOLOv8s-CGF) is only 11.7 M, which accounts for 52.0% of the original model (YOLOv8s). The number of parameters is only 5.7 × 106 M, equivalent to 51.4% of the original model. The computational volume is only 21.1 GFLOPs, representing 74.3% of the original model. Moreover, the mean average precision (mAP@0.5) of the model is 99.492%, which is 0.003% higher than the original model, and the mAP@0.5:0.95 is 0.269% higher than the original model. Compared to other YOLO models, the improved lightweight model not only achieved the highest detection precision but also significantly reduced the number of parameters and model size. This provides a valuable reference for FHB detection in wheat ears and deployment on mobile terminals in field environments.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Joint Fund of Science and Technology Research and Development Plan of Henan Province

Publisher

PeerJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3