A comprehensive survey of techniques for developing an Arabic question answering system

Author:

Alkhurayyif Yazeed1,Wahab Sait Abdul Rahaman2

Affiliation:

1. Department of Computer Science, Al Quwayiyah College of Sciences and Humanities, Shaqra University, Saudi Arabia

2. Department of Documents and Archive, Center of Documents and Administrative Communication, King Faisal University, Al-Ahsa, Saudi Arabia

Abstract

The question-answering system (QAS) aims to produce a response to a query using information from a text corpus. Arabic is a complex language. However, it has more than 450 million native speakers across the globe. The Saudi Arabian government encourages organizations to automate their routine activities to provide adequate services to their stakeholders. The performance of current Arabic QASs is limited to the specific domain. An effective QAS retrieves relevant responses from structured and unstructured data based on the user query. Many QAS studies categorized QASs according to factors, including user queries, dataset characteristics, and the nature of the responses. A more comprehensive examination of QASs is required to improve the QAS development according to the present QAS requirements. The current literature presents the features and classifications of the Arabic QAS. There is a lack of studies to report the techniques of Arabic QAS development. Thus, this study suggests a systematic literature review of strategies for developing Arabic QAS. A total of 617 articles were collected, and 40 papers were included in the proposed review. The outcome reveals the importance of the dataset and the deep learning techniques used to improve the performance of the QAS. The existing systems depend on supervised learning methods that lower QAS performance. In addition, the recent development of machine learning techniques encourages researchers to develop unsupervised QAS.

Funder

Deanship of Scientific Research

Publisher

PeerJ

Subject

General Computer Science

Reference62 articles.

1. Al-Bayan: an Arabic question answering system for the Holy Quran;Abdelnasser,2014

2. IDRAAQ: new Arabic question answering system based on query expansion and passage retrieval;Abouenour,2012

3. Extracting names from Arabic text for question-answering systems;Abuleil,2004

4. Web-based arabic question answering system using machine learning approach;Ahmed;International Journal of Advanced Research in Computer Science,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3