Arrhythmia classification for non-experts using infinite impulse response (IIR)-filter-based machine learning and deep learning models of the electrocardiogram

Author:

K Mallikarjunamallu1,Syed Khasim1

Affiliation:

1. School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India

Abstract

Arrhythmias are a leading cause of cardiovascular morbidity and mortality. Portable electrocardiogram (ECG) monitors have been used for decades to monitor patients with arrhythmias. These monitors provide real-time data on cardiac activity to identify irregular heartbeats. However, rhythm monitoring and wave detection, especially in the 12-lead ECG, make it difficult to interpret the ECG analysis by correlating it with the condition of the patient. Moreover, even experienced practitioners find ECG analysis challenging. All of this is due to the noise in ECG readings and the frequencies at which the noise occurs. The primary objective of this research is to remove noise and extract features from ECG signals using the proposed infinite impulse response (IIR) filter to improve ECG quality, which can be better understood by non-experts. For this purpose, this study used ECG signal data from the Massachusetts Institute of Technology Beth Israel Hospital (MIT-BIH) database. This allows the acquired data to be easily evaluated using machine learning (ML) and deep learning (DL) models and classified as rhythms. To achieve accurate results, we applied hyperparameter (HP)-tuning for ML classifiers and fine-tuning (FT) for DL models. This study also examined the categorization of arrhythmias using different filters and the changes in accuracy. As a result, when all models were evaluated, DenseNet-121 without FT achieved 99% accuracy, while FT showed better results with 99.97% accuracy.

Publisher

PeerJ

Reference68 articles.

1. ECG heartbeat classification using multimodal fusion;Ahmad;IEEE Access,2021

2. Analysis and classification of heart diseases using heartbeat features and machine learning algorithms;Alarsan;Journal of Big Data,2019

3. Comparative evaluation for two and five classes ECG signal classification: applied deep learning;Ali;Journal of Algebraic Statistics,2022

4. Designing an optimum and reduced order filter for efficient ECG QRS peak detection and classification of arrhythmia data;Amhia;Journal of Healthcare Engineering,2021

5. QRS detection in electrocardiogram signal of exercise physical activity;Apandi;Journal of Physics: Conference Series,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Machine Learning Approach for Detection of Heart Diseases Using Wearable Devices;2024 IEEE 4th International Conference on Smart Information Systems and Technologies (SIST);2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3