Water deprivation-induced hypoxia and oxidative stress physiology responses in respiratory organs of the Indian stinging fish in near coastal zones

Author:

Pati Samar Gourav1,Panda Falguni1,Bal Abhipsa12,Paital Biswaranjan1,Sahoo Dipak Kumar3

Affiliation:

1. Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

2. Department of Zoology, Regional Institute of Education, Bhubaneswar, Odisha, India

3. Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America

Abstract

Background Water deprivation-induced hypoxia stress (WDIHS) has been extensively investigated in numerous fish species due to their adaptation with accessory respiratory organs to respire air but this has not been studied in Indian stinging fish Heteropneustes fossilis. Data regarding WDIHS-induced metabolism in accessory respiratory organ (ARO) and gills and its relationship with oxidative stress (OS) in respiratory organs of air-breathing fish H. fossilis, are limited. So, this study aimed to investigate the effects of WDIHS (0, 3, 6, 12, and 18 h) on hydrogen peroxide (H2O2) as reactive oxygen species (ROS), OS, redox regulatory enzymes, and electron transport enzymes (ETC) in ARO and gills of H. fossilis. Methods Fish were exposed to air for different hours (up to 18 h) against an appropriate control, and ARO and gills were sampled. The levels of oxygen saturation in the body of the fish were assessed at various intervals during exposure to air. Protein carbonylation (PC) and thiobarbituric acid reactive substances (TBARS) were used as OS markers, H2O2 as ROS marker, and various enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), along with the assessment of complex enzymes (I, II, III, and V) as well as the levels of ascorbic acid (AA) and the reduced glutathione (GSH) were quantified in both the tissues. Results Discriminant function analyses indicate a clear separation of the variables as a function of the studied parameters. The gills exhibited higher levels of GSH and H2O2 compared to ARO, while ARO showed elevated levels of PC, TBARS, AA, SOD, CAT, and GPx activities compared to the gills. The activities of GR and ETC enzymes exhibited similar levels in both the respiratory organs, namely the gills, and ARO. These organs experienced OS due to increased H2O2, TBARS, and PC levels, as observed during WDIHS. Under WDIHS conditions, the activity/level of CAT, GPx, GR, and GSH decreased in ARO, while SOD activity, along with GR, GSH, and AA levels decreased in gills. However, the activity/level of SOD and AA in ARO and CAT in gills was elevated under WDIHS. Complex II exhibited a positive correlation with WDIHS, while the other ETC enzymes (complex I, III, and V) activities had negative correlations with the WDIHS. Discussion The finding suggests that ARO is more susceptible to OS than gills under WDIHS. Despite both organs employ distinct redox regulatory systems to counteract this stress, their effectiveness is hampered by the inadequacy of small redox regulatory molecules and the compromised activity of the ETC, impeding their ability to effectively alleviate the stress induced by the water-deprivation condition.

Funder

The funding to Biswaranjan Paital from the Science and Engineering Research Board, Department of Science and Technology, Govt. of India New Delhi, India

Department of Science and Technology, Government of Odisha

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3