Inhibition of non-small cell lung cancer (NSCLC) proliferation through targeting G6PD

Author:

Chanda Makamas1,Anuntasomboon Pornchai2,Ruangritchankul Komkrit3,Cheepsunthorn Poonlarp4,Cheepsunthorn Chalisa L.5

Affiliation:

1. Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand

2. Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

3. Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

4. Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

5. Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Abstract

Background Mounting evidence has linked cancer metabolic reprogramming with altered redox homeostasis. The pentose phosphate pathway (PPP) is one of the key metabolism-related pathways that has been enhanced to promote cancer growth. The glucose 6-phosphate dehydrogenase (G6PD) of this pathway generates reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is essential for controlling cellular redox homeostasis. Objective This research aimed to investigate the growth-promoting effects of G6PD in non-small cell lung cancer (NSCLC). Methods Clinical characteristics and G6PD expression levels in lung tissues of 64 patients diagnosed with lung cancer at the King Chulalongkorn Memorial Hospital (Bangkok, Thailand) during 2009-2014 were analyzed. G6PD activity in NSCLC cell lines, including NCI-H1975 and NCI-H292, was experimentally inhibited using DHEA and siG6PD to study cancer cell proliferation and migration. Results The positive expression of G6PD in NSCLC tissues was detected by immunohistochemical staining and was found to be associated with squamous cells. G6PD expression levels and activity also coincided with the proliferation rate of NSCLC cell lines. Suppression of G6PD-induced apoptosis in NSCLC cell lines by increasing Bax/Bcl-2 ratio expression. The addition of D-(-)-ribose, which is an end-product of the PPP, increased the survival of G6PD-deficient NSCLC cell lines. Conclusion Collectively, these findings demonstrated that G6PD might play an important role in the carcinogenesis of NSCLC. Inhibition of G6PD might provide a therapeutic strategy for the treatment of NSCLC.

Funder

100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship

90th Anniversary of Chulalongkorn University Fund

Ratchadapiseksompotch Fund

Faculty of Medicine, Chulalongkorn University

Thailand Government Budget Fund 2018

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3