Rhizocompartmental microbiomes of arrow bamboo (Fargesia nitida) and their relation to soil properties in Subalpine Coniferous Forests

Author:

Zhang Nan Nan12,Chen Xiao Xia123,Liang Jin12,Zhao Chunzhang4,Xiang Jun1,Luo Lin123,Wang En Tao5,Shi Fusun12

Affiliation:

1. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China

2. CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China

3. University of Chinese Academy of Sciences, Beijing, China

4. Chengdu University of Technology, Chengdu, China

5. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México

Abstract

Arrow bamboo (Fargesia nitida) is a pioneer plant in secondary forest succession in the Sichuan Province mountains. To comprehensively investigate the microbial communities and their functional variations in different rhizocompartments (root endosphere, rhizosphere, and root zone) of arrow bamboo (Fargesia nitida), a high-throughput metagenomic study was conducted in the present study. The results showed that the abundances of the dominant bacterial phyla Proteobacteria and Actinobacteria in the bamboo root endosphere were significantly lower than those in the rhizosphere and root zones. In contrast, the dominant fungal phyla, Ascomycota and Basidiomycota, showed the opposite tendency. Lower microbial diversity, different taxonomic composition and functional profiles, and a greater abundance of genes involved in nitrogen fixation (nifB), cellulose degradation (beta-glucosidase), and cellobiose transport (cellulose 1, 4-beta-cellobiosidase) were found in the bamboo root endosphere than in the other rhizocompartments. Greater soil total carbon, total nitrogen, NH4+-N, microbial biomass carbon, and greater activities of invertase and urease were found in the bamboo root zone than in the adjacent soil (spruce root zone). In contrast, the soil microbial community and functional profiles were similar. At the phylum level, invertase was significantly related to 31 microbial taxa, and the effect of NH4+-N on the microbial community composition was greater than that of NO3-N. The soil physicochemical properties and enzyme activities were significantly correlated with microbial function. These results indicate that the root endosphere microbiomes of arrow bamboo were strongly selected by the host plant, which caused changes in the soil nutrient properties in the subalpine coniferous forest.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3