Diagnostic value of artificial intelligence based on computed tomography (CT) density in benign and malignant pulmonary nodules: a retrospective investigation

Author:

Fan Wei1,Liu Huitong2,Zhang Yan1,Chen Xiaolong1,Huang Minggang1,Xu Bingqiang1

Affiliation:

1. Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China

2. Department of Orthopaedics, Shaanxi Provincial People’s Hospital, Xi’an, China

Abstract

Objective To evaluate the diagnostic value of artificial intelligence (AI) in the detection and management of benign and malignant pulmonary nodules (PNs) using computed tomography (CT) density. Methods A retrospective analysis was conducted on the clinical data of 130 individuals diagnosed with PNs based on pathological confirmation. The utilization of AI and physicians has been employed in the diagnostic process of distinguishing benign and malignant PNs. The CT images depicting PNs were integrated into AI-based software. The gold standard for evaluating the accuracy of AI diagnosis software and physician interpretation was the pathological diagnosis. Results Out of 226 PNs screened from 130 patients diagnosed by AI and physician reading based on CT, 147 were confirmed by pathology. AI had a sensitivity of 94.69% and radiologists had a sensitivity of 85.40% in identifying PNs. The chi-square analysis indicated that the screening capacity of AI was superior to that of physician reading, with statistical significance (p < 0.05). 195 of the 214 PNs suggested by AI were confirmed pathologically as malignant, and 19 were identified as benign; among the 29 PNs suggested by AI as low risk, 13 were confirmed pathologically as malignant, and 16 were identified as benign. From the physician reading, 193 PNs were identified as malignant, 183 were confirmed malignant by pathology, and 10 appeared benign. Physician reading also identified 30 low-risk PNs, 19 of which were pathologically malignant and 11 benign. The physician readings and AI had kappa values of 0.432 and 0.547, respectively. The physician reading and AI area under curves (AUCs) were 0.814 and 0.798, respectively. Both of the diagnostic techniques had worthy diagnostic value, as indicated by their AUCs of >0.7. Conclusion It is anticipated that the use of AI-based CT diagnosis in the detection of PNs would increase the precision in early detection of lung carcinoma, as well as yield more precise evidence for clinical management.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3