Utilization and transformation of Chrysotila dentata-derived dissolved organic matter by phycosphere bacteria Marinobacter hydrocarbonoclasticus and Bacillus firmus

Author:

Wang Xueru123,Fan Chenjuan3,Sun Jun123

Affiliation:

1. China University of Geosciences, Institute for Advance Marine Research, Guangzhou, China

2. China University of Geosciences, State Key Laboratory of Biogeology and Environmental Geology, Wuhan, China

3. Tianjin University of Science and Technology, Research Centre for Indian Ocean Ecosystem, Tianjin, China

Abstract

The dissolved organic matter (DOM) released from the cocoolithophores (Chrysotila dentata) was studied in laboratory experiments after co-culturing C. dentata with bacteria. Marinobacter hydrocarbonoclasticus (CA6)-γ-Proteobacteria and Bacillus firmus (CF2) were used to investigate the utilization and processing of the DOM derived from C. dentata, utilizing fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (EEM-PARAFAC), while measuring algal abundance and photosynthetic parameters. The experimental groups consisted of axenic C. dentata groups, filter cultured with bacteria (CA6 or CF2) groups, C. dentata co-cultured with bacteria (CA6 or CF2) groups and axenic bacteria (CA6 or CF2) groups. We then evaluated the processing of DOM by determining four fluorescence indices. The number of C. dentata cells and the photosynthetic capacity of microalgae were enhanced by CA6 and CF2. The main known fluorophores, including humic-like components and protein-like components, were present in all sample. The protein-like component of algal-bacterial co-cultures was effectively utilized by CA6 and CF2. The humic-like components increased at the end of the culture time for all cultures. Meanwhile, the average fluorescence intensity of protein-like in CA6 co-culture with algae was lower than that in CF2 co-culture with algae over time. On the other hand, the average fluorescence intensity of humic-like in CA6 was higher than CF2. However, the total change in fluorescence in humic-like and protein-like of axenic CF2 cultures was lower than that of CA6. Hence, the ability of CA6 to transform microalgal-derived DOM was superior to that of CF2, and CF2’s ability to consume bacterial-derived DOM was superior to that of CA6.

Funder

National Key Research and Development Project of China

Changjiang Scholar Program of Chinese Ministry of Education

State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3