No effects of the antiandrogens cyproterone acetate (CPA), flutamide and p,p’-DDE on early sexual differentiation but CPA-induced retardation of embryonic development in the domestic fowl (Gallus gallus domesticus)

Author:

Jessl Luzie12,Oehlmann Jörg1

Affiliation:

1. Aquatic Ecotoxicology, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany

2. R-Biopharm AG, Darmstadt, Hesse, Germany

Abstract

Because a wide range of environmental contaminants are known to cause endocrine disorders in humans and animals, in vivo tests are needed to identify such endocrine disrupting chemicals (EDCs) and to assess their biological effects. Despite the lack of a standardized guideline, the avian embryo has been shown to be a promising model system which responds sensitively to EDCs. After previous studies on the effects of estrogenic, antiestrogenic and androgenic substances, the present work focuses on the effects of in ovo exposure to p,p’-DDE, flutamide and cyproterone acetate (CPA) as antiandrogenic model compounds regarding gonadal sex differentiation and embryonic development of the domestic fowl (Gallus gallus domesticus). The substances were injected into the yolk of fertilized eggs on embryonic day one. On embryonic day 19 sex genotype and phenotype were determined, followed by gross morphological and histological examination of the gonads. Treatment with flutamide (0.5, 5, 50 µg/g egg), p,p’-DDE (0.5, 5, 50 µg/g egg) or CPA (0.2, 2, 20 µg/g egg) did not affect male or female gonad development, assessed by gonad surface area and cortex thickness in both sexes and by the percentage of seminiferous tubules in males as endpoints. This leads to the conclusion that antiandrogens do not affect sexual differentiation during embryonic development of G. gallus domesticus, reflecting that gonads are not target organs for androgens in birds. In ovo exposure to 2 and 20 µg CPA/g egg, however, resulted in significantly smaller embryos as displayed by shortened lengths of skull, ulna and tarsometatarsus. Although gonadal endpoints were not affected by antiandrogens, the embryo of G. gallus domesticus is shown to be a suitable test system for the identification of substance-related mortality and developmental delays.

Funder

GenOvotox II

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3