Individual and combined ecotoxic effects of water-soluble polymers

Author:

Hisar Olcay1,Oehlmann Jörg12

Affiliation:

1. Department Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Hessen, Germany

2. Kompetenzzentrum Wasser, Frankfurt am Main, Hessen, Germany

Abstract

Water-soluble polymers (WSPs) are a class of high-molecular-weight compounds which are widely used in several applications, including water treatment, food processing, and pharmaceuticals. Therefore, they pose a potential threat for water resources and aquatic ecosystems. We assessed the ecotoxicity of four WSPs—non-ionic polyacrylamide (PAM) and polyethylene glycol (PEG-200), anionic homopolymer of acrylic acid (P-AA), and cationic polyquaternium-6 (PQ-6)—as single compounds and in mixture. For this purpose in vitro and in vivo assays were used to record baseline toxicity, mutagenic potential, endocrine effects, and growth inhibition in the freshwater alga Raphidocelis subcapitata. Furthermore, the mixture toxicity of the two polymers P-AA and PQ-6 which showed effects in the algae tests was evaluated with the concentration addition (CA), independent action (IA), and generalized concentration addition (GCA) model and compared with experimental data. No toxic effects were observed among the polymers and their mixtures in the in vitro assays. On the contrary, in the growth inhibition test with R. subcapitata the cationic PQ-6 caused high inhibition while the anionic P-AA and its mixture with the cationic polymer caused low inhibition. The non-ionic polymers PEG-200 and PAM showed no effect in R. subcapitata in the tested concentration range up to 100 mg/L. The IA model represented the mixture effect of the combination experiment better than the CA and GCA models. The results indicate (1) that the toxic effects of anionic and cationic polymers are most likely due to interactions of the polymers with the surfaces of organisms or with nutrients in the water and (2) that the polymers elicit their effects through different mechanisms of action that do not interact with each other.

Funder

Johann Wolfgang Goethe-University Frankfurt

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3