Retinoic acid-releasing scaffold based on chitosan hydrogel and testis decellular plates

Author:

Zarei Hooman1ORCID,Movahedin Mansoureh1ORCID,Ganji Fariba2ORCID,Ghiaseddin Ali3ORCID

Affiliation:

1. Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2. Biomedical Engineering Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

3. Adjunct Research Associate Professor at Chemistry Department, Michigan State University, East Lansing, MI, USA

Abstract

Introduction: The use of releasing scaffolds is promising for testes tissue engineering. Chitosan (CS) is a natural biopolymer extensively used as a delivery system. The decellularized testis provides a structure resembling natural extracellular matrix (ECM). All-trans retinoic acid (atRA) is an important factor for spermatogonia differentiation, meiosis completion, and mature sperm release. In this study, thermosensitive CS/βGP hydrogel was served as a novel atRA-releasing support for testis decellular plates (TDPs). Methods: The CS/βGP hydrogel was evaluated for gelation time, morphology, wettability, cytocompatibility, and atRA-releasing behavior. Mouse testes were treated with 1% SDS and evaluated for decellularization efficacy through morphological assessments, DNA content assays, and DAPI staining. TDPs were obtained from the decellularized testes and placed on an atRA-releasing CS/βGP hydrogel support. Results: The CS/βGP hydrogels were prepared with different formulations. It was found that increasing the βGP concentration significantly decreased the gelation time. The addition of atRA did not considerably affect the hydrophilicity of hydrogel. The in vitro release studies showed a sustained atRA release behavior, although an initial low burst release was recorded. Also, increasing the amount of atRA led to a decrease in the rate of drug release. The decellularization procedure successfully removed cells while preserving the ECM. The atRA-releasing CS-TDP scaffold was found to be non-toxic with good biocompatibility. Conclusion: Results showed that the novel atRA-releasing CS-TDP scaffold can sustainably deliver atRA to the culture system and create a cytocompatible environment for testicular cells. Therefore, this scaffold may be useful in developing new tissue engineering approaches for various types of male infertility diseases.

Publisher

Maad Rayan Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3