Benchmarking different docking protocols for predicting the binding poses of ligands complexed with cyclooxygenase enzymes and screening chemical libraries

Author:

Shamsian Sara12ORCID,Sokouti Babak3,Dastmalchi Siavoush234ORCID

Affiliation:

1. Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5165665931, ‎Iran

2. ‎Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical ‎Sciences, Tabriz, 5166414766, Iran ‎

3. Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, ‎Iran

4. Faculty of Pharmacy, Near East University, POBOX:99138, Nicosia, North Cyprus, Mersin ‎‎10, Turkey

Abstract

Introduction: Non-steroidal anti-inflammatory drugs (NSAIDs) constitute an important class of pharmaceuticals acting on cyclooxygenase COX-1 and COX-2 enzymes. Due to their numerous severe side effects, it is necessary to search for new selective, safe, and effective anti-inflammatory drugs. In silico design of novel therapeutics plays an important role in nowadays drug discovery pipelines. In most cases, the design strategies require the use of molecular docking calculations. The docking procedure may require case-specific condition for a successful result. Additionally, many different docking programs are available, which highlights the importance of identifying the most proper docking method and condition for a given problem. Methods: In the current work, the performances of five popular molecular docking programs, namely, GOLD, AutoDock, FlexX, Molegro Virtual Docker (MVD) and Glide to predict the binding mode of co- crystallized inhibitors in the structures of known complexes available for cyclooxygenases were evaluated. Furthermore, the best performers, Glide, AutoDock, GOLD and FlexX, were further evaluated in docking-based virtual screening of libraries consisted of active ligands and decoy molecules for cyclooxygenase enzymes and the obtained docking scores were assessed by receiver operating characteristics (ROC) analysis. Results: The results of docking experiments indicated that Glide program outperformed other docking programs by correctly predicting the binding poses (RMSD less than 2 Å) of all studied co-crystallized ligands of COX-1 and COX-2 enzymes (i.e., the performance was 100%). However, the performances of the other studied docking methods for correctly predicting the binding poses of the ligands were between 59% to 82%. Virtual screening results treated by ROC analysis revealed that all tested methods are useful tools for classification and enrichment of molecules targeting COX enzymes. The obtained AUCs range between 0.61-0.92 with enrichment factors of 8 – 40 folds. Conclusion: The obtained results support the importance of choosing appropriate docking method for predicting ligand-receptor binding modes, and provide specific information about docking calculations on COXs ligands.

Publisher

Maad Rayan Publishing Company

Subject

Pharmaceutical Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3