Osteogenic Differentiation Potential of Adipose-Derived Mesenchymal Stem Cells Cultured on Magnesium Oxide/Polycaprolactone Nanofibrous Scaffolds for Improving Bone Tissue Reconstruction

Author:

Niknam Zahra12ORCID,Golchin Ali3ORCID,Rezaei –Tavirani Mostafa2,Ranjbarvan Parviz3,Zali Hakimeh4,Omidi Meisam56,Mansouri Vahid12

Affiliation:

1. Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

2. Proteomics research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

3. Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.

4. Medical Nanotechnology and Tissue Engineering Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

5. Marquette University School of Dentistry, Milwaukee, WI, USA.

6. Protein Research Centre, Shahid Beheshti University, GC, Velenjak, Tehran, Iran.

Abstract

Purpose: Recently, bone tissue engineering as a new strategy is used to repair and replace bone defects due to limitations in allograft and autograft methods. In this regard, we prepared nanofibrous scaffolds composed of polycaprolactone and magnesium oxide nanoparticles using the electrospinning technique for possible bone tissue engineering applications. Methods: The fabricated composites were characterized via scanning electron microscopy imaging of scaffolds and seeded cells, water contact angle, DAPI staining, and MTT assay. Then osteogenic differentiation of adipose-derived mesenchymal stem cells cultured on this composite scaffold was determined by standard osteogenic marker tests, including alkaline phosphatase activity, calcium deposition, and expression of osteogenic differentiation genes in the laboratory conditions. Results: The Scanning electron microscopy analysis demonstrated that the diameter of nanofibers significantly decreased from 1029.25±209.349 µm to 537.83+0.140 nm, with the increase of MgO concentration to 2% (p<0.05). Initial adhesion and proliferation of the adipose-derived mesenchymal stem cells on magnesium oxide/polycaprolactone scaffolds were significantly enhanced with the increasing of magnesium oxide concentration (p<0.05). The 2% magnesium oxide/polycaprolactone nanofibrous scaffold showed significant increase in ALP activity (p<0.05) and osteogenic-related gene expressions (Col1a1 and OPN) (p<0.05) in compared to pure polycaprolactone and (0, 0.5 and 1%) magnesium oxide/polycaprolactone scaffolds. Conclusion: According to the results, it was demonstrated that magnesium oxide/polycaprolactone composite nanofibers have considerable osteoinductive potential, and taking together adipose-derived mesenchymal stem cells-magnesium oxide/polycaprolactone composite nanofibers can be a proper bio-implant to usage for bone regenerative medicine applications. Future in vivo studies are needed to determine this composite therapeutic potential.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3