Stem Cell's Secretome Delivery Systems

Author:

Umar Abd. Kakhar12ORCID

Affiliation:

1. Department of Pharmacy, Faculty of Math and Natural Sciences, Universitas Tadulako, Palu City 94225, Indonesia.

2. Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia.

Abstract

Stem cells’ secretome contains biomolecules that are ready to give therapeutic activities. However, the biomolecules should not be administered directly because of their in vivo instability. They can be degraded by enzymes or seep into other tissues. There have been some advancements in localized and stabilized secretome delivery systems, which have increased their effectiveness. Fibrous, in situ, or viscoelastic hydrogel, sponge-scaffold, bead powder/suspension, and bio-mimetic coating can maintain secretome retention in the target tissue and prolong the therapy by sustained release. Porosity, young's modulus, surface charge, interfacial interaction, particle size, adhesiveness, water absorption ability, in situ gel/film, and viscoelasticity of the preparation significantly affect the quality, quantity, and efficacy of the secretome. Therefore, the dosage forms, base materials, and characteristics of each system need to be examined to develop a more optimal secretome delivery system. This article discusses the clinical obstacles and potential solutions for secretome delivery, characterization of delivery systems, and devices used or potentially used in secretome delivery for therapeutic applications. This article concludes that secretome delivery for various organ therapies necessitates the use of different delivery systems and bases. Coating, muco-, and cell-adhesive systems are required for systemic delivery and to prevent metabolism. The lyophilized form is required for inhalational delivery, and the lipophilic system can deliver secretomes across the blood-brain barrier. Nano-sized encapsulation and surface-modified systems can deliver secretome to the liver and kidney. These dosage forms can be administered using devices such as a sprayer, eye drop, inhaler, syringe, and implant to improve their efficacy through dosing, direct delivery to target tissues, preserving stability and sterility, and reducing the immune response.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3