Removal of mercury (II) from aqueous solutions by multiwalled carbon nanotubes coated with manganese oxide

Author:

Khodabakhshi Abbas1ORCID,Asgarian Hassan2

Affiliation:

1. Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran

2. Student Department of Environmental Health Engineering, Shahrekord University of Medical Sciences, Shahrekord, Iran

Abstract

Background and aims: Water pollution by heavy metals is one of the most important environmental problems. Among the heavy metals, mercury (Hg) is a very toxic metal and its high concentration can lead to impaired pulmonary and renal dysfunction. The aim of this study was to determine the amount of Hg removal by carbon nanotubes coated with manganese (Mn) oxide from aqueous solutions. Methods: In this study, multi-walled carbon nanotubes coated with Mn oxide were prepared and used to remove Hg from aqueous environments. In addition, the physical and structural characteristics of the nanotubes were determined by the X-ray diffraction (XRD). The impact of diverse variables was further investigated, including the initial concentration of Hg, the initial pH of the solution, contact time, mixing rate, as well as the amount of nano-composite and the impacts of confounders (nitrate and chloride). Finally, optimum conditions for each of these parameters were obtained by the Taguchi statistical method. Results: The XRD analysis showed that the nanotubes were properly coated with Mn oxide. Furthermore, the results demonstrated that under pH 7, the rate of mixing of 150 rpm, the contact time of 60 minutes, the amount of nano-composite of 60 mg, and the initial density of Hg 80 mg/L can be achieved by removing 95% Hg. Moreover, the confounder factors of nitrate and chloride reduced the amount of Hg removal by 4 and 5%, respectively. Conclusion: Based on the results, the nanotubes coated with Mn oxide can be used as easy and strong absorbents for the rapid absorption of Hg from drinking water and industrial wastewater.

Publisher

Maad Rayan Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3