Synthesis, Crystal Structure and Antibacterial Activity of Cu(II) Complex with Nitrogen Donor Pyrazolyl Borate Derivatives

Author:

Soltani Behzad1ORCID,Ghorbanpour Monireh1,Bagheri Saeide1,Ebadi-Nahari Mostafa2,J. Ziegler Christopher3

Affiliation:

1. Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz, Iran.

2. Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.

3. Department of Chemistry, University of Akron, Akron, Ohio44325, USA.

Abstract

Background: Pyrazolyl borate derivatives are versatile ligands that can be coordinated with transition metals and formated a variety of different coordination modes. Copper complexes are highly active in biological applications and have high bioactivity. Because of the above description and applications, in the present work, synthesis and characterization of pyrazolyl borate derivative ligands and their Cu(II) complex were reported. The structure of the synthesized complex was determined by X-ray crystallography. In addition, the antimicrobial activity of the synthesized compounds along with the molecular docking of them was investigated. Methods: N-donor pyrazolyl borate derivative ligands abbreviated as K[HB(PzMe2)3] and K[H2B(PzMe2)2] and their Cu(II) complex were synthesized and characterized. The synthesized ligands and complex were evaluated for antibacterial activities against the gram-positive (B. subtilis) and the gram-negative (S. enterica) bacteria. Also, their molecular docking with B. subtilis SMC head domain (PDB ID: 5H67) as the possible targets was investigated. Results: The in vitro and in silico results showed, among the investigated compounds, complex [Cu(H2B(PzMe2)2)(HB(PzMe2)3)] indicated the highest antibacterial activity. Also, the Statistical analysis showed that the difference between the obtained data was significant. Conclusion: We have synthesized N-donor pyrazolyl borate derivatives and their copper (II) complex. Single X-ray results indicated the Cu(II) complex adopted an N5 environment around the metal center with a distorted square pyramidal geometry. The obtained binding energy of molecular docking studies is in direct correlation with the in vitro antibacterial studies. Briefly, the reported Cu(II) complex may be considered as a potential antibacterial candidate.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3