Bayesian estimation of vaccine efficacy

Author:

Chu Haitao1,Halloran M Elizabeth2

Affiliation:

1. Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Johns Hopkins University, Bloomberg School of Public Health, Department of Epidemiology, 615 N. Wolfe Street, E7139 Baltimore, MD 21205, USA;

2. Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA, USA

Abstract

Protective vaccine efficacy, VES, is measured as one minus the incidence rate ratio (IRR) or the relative risk (RR) in the vaccinated group compared with the unvaccinated group. In this paper, we systematically present Bayesian estimation of protective vaccine efficacy based on the Poisson and binomial distributions. We also propose a new tool, the vaccine efficacy acceptability curve, to represent the uncertainty for the estimate of the vaccine efficacy graphically. It is very useful, especially when there is no universal agreement on the acceptable vaccine efficacy. The vaccine efficacy acceptability curve is defined as the posterior probability that the measure of vaccine efficacy VES ≥ k for each acceptable value k. When a vaccine is highly efficacious, the number of vaccinated susceptibles being infected is likely to be very small or even zero. Then the assumptions of normality and log-normality of IRR or RR usually do not hold well. Although frequentist exact methods provide good estimates of the confidence interval, they are overly conservative and are computationally difficult to extend to estimate the vaccine efficacy acceptability curve. In this paper, our focus is on Bayesian estimation of protective vaccine efficacy, its highest probability density credible set, and the vaccine efficacy acceptability curve through Markov chain Monte Carlo (MCMC) methods. We illustrate the methods using the data from two pertussis vaccine studies and the H. influenza Type B preventive trial.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3