MODEL ESTIMASI DATA INTENSITAS RADIASI MATAHARI UNTUK WILAYAH BANTEN

Author:

Munawar Munawar,Mulsandi Adi,Hidayat Anistia Malinda

Abstract

Data intensitas radiasi matahari (Rs, MJ/m2/day) memiliki peran yang sangat penting dalam pemodelan cuaca dan iklim guna mengkuantifikasi panas yang dipertukarkan antara permukaan dan atmosfer. Namun, keterbatasan jumlah titik pengamatan intensitas radiasi matahari menjadikan pemodelan sebagai alternatif solusi yang relatif mudah dan murah untuk pengambilan data intensitas radiasi. Penelitian ini bertujuan untuk mengevaluasi performa model dalam mengestimasi nilai intensitas radiasi matahari di wilayah penelitian menggunakan dua pendekatan model yang berbeda, yaitu model empiris oleh Keiser, Arkansas (AR) dan model deterministik. Tiga variabel utama cuaca yang digunakan sebagai input data model adalah curah hujan (mm), suhu maksimum (°C), dan suhu minimum (°C). Kedua model tersebut dipilih karena dapat diterapkan dengan hanya melibatkan variabel utama atmosfer yang tersedia dalam waktu yang panjang di lokasi penelitian. Hasil prediksi yang dilakukan dengan model kemudian dibandingkan dengan data reanalisis National Centers for Environmental Prediction (NCEP) pada titik koordinat wilayah Stasiun Klimatologi Pondok Betung. Hasilnya menunjukkan performa model empirik lebih baik dalam menggambarkan variasi temporal dan prediksi variabel intensitas matahari dibandingkan model deterministik. Hal tersebut ditunjukkan dengan nilai korelasi yang cukup baik, yakni mencapai 0,72 (korelasi kuat) dan nilai Root Mean Square Error (RMSE) 2,0. Atas dasar hasil pemodelan yang cukup representatif di lokasi penelitian, analisis secara spasial kemudian diterapkan untuk skala wilayah yang lebih luas, yaitu Provinsi Banten. Berdasarkan tinjauan secara spasial di wilayah kajian, model empirik memiliki performa yang bervariasi di wilayah Provinsi Banten. Hasil prediksi intensitas radiasi matahari di wilayah bagian barat memiliki performa yang lebih baik dibandingkan wilayah bagian timur.  

Publisher

Badan Pengkajian dan Penerapan Teknologi (BPPT)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3