Synthesis and Characterization of Red Pigment from Acid Regeneration Plant (ARP) By-product Via Rod Milling Process

Author:

Woon Hai Song, ,Naidu Keerthan,Ewe Lay Sheng,Ean Lee Woen,Lim Kean Pah, , , , ,

Abstract

Iron o xide waste from acid regeneration plants (ARP) is often discarded due to its non-profitability. This research aims to introduce a value-added process to convert iron oxide waste into red pigment via rod milling process. The iron oxide waste collected from ARP was grinded with a rod milling machine at 30 rpm for 24 hours. The ground product was then mixed with industrial-grade red pigment in various ratios. The mixed samples were then rod-milled again into ultra-fine particles. A total of seven samples were prepared, applied onto a canvas and analysed by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) methods. From the analyses, the existence, composition, and orientation of iron oxide were established. The waste-derived red pigments were subsequently subjected to particle size analysis on a scanning electron microscopy (SEM) platform, with results showcasing the efficiency of the rod milling process. Colour-related properties of the samples before and after canvas application were investigated using the L*a*b* system with a chromameter. Empirical outcomes indicated that the a* value plays an important role in determining the redness of the sample. Overall, the a* values obtained were above 15 and gradually increased in accordance to the amount of industrial-grade red pigment added. The oil absorptivity of red pigments was also tested via an oil absorptivity test. Notably, the assay signified that particle size and porosity affect the amount of oil that can be absorbed by the pigment.

Publisher

Chiang Mai University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3