A ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER: ISPH SIMULATIONS

Author:

Alsedais Noura,Lee Sang-Wook,Aly Abdelraheem M.

Abstract

The originality of this study is the introduction of numerical investigations on the bioconvection flow of nano-encapsulated phase change materials (NEPCMs) with oxytactic microorganisms in a new configuration of a circular annulus with a rotating wavy inner cylinder. The incompressible smoothed particle hydrodynamics (ISPH) method was applied to solve the governing partial differential equations for the velocity, temperature, concentration, and density of motile microorganisms. Compared with the conventional mesh-based method, this mesh-free, particle-based approach offers strong advantages in the simulation of complex problems with free surfaces and moving boundaries with large displacements. The pertinent parameters are the undulation number (<i>N<sub>und</sub></i> &#61; 2-36), bioconvection Rayleigh number (<i>Ra<sub>b</sub></i> &#61; 1-1000), Darcy parameter (Da &#61; 10<sup>-5</sup>-10<sup>-2</sup>), length of the inner fin (<i>L<sub>Fin</sub></i> &#61; 0.05-0.15), radius of the inner wavy cylinder (<i>R<sub>c</sub></i> &#61; 0.05-0.25), Rayleigh number (Ra &#61; 10<sup>3</sup>-10<sup>5</sup>), undulation amplitude of the inner wavy cylinder surface (<i>A</i> &#61; 0.1-0.4), and frequency parameter (<i>&omega; </i>&#61; 1-5). The undulation number of the inner wavy cylinder enhanced the flow of the oxytactic microorganisms and isotherms, whereas it had the reverse effect on the velocity, decreasing the maximum velocity by 26.56&#37;. In addition, the comparatively high undulation amplitude and frequency increased the average Nusselt and Sherwood numbers. It was found that the embedded wavy cylinder interacting with fins plays an important role in enhancing heat transfer and the bioconvection flow within a closed domain.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3