The ceRNA Mechanism of lncRNA MEG3/miR-21-5p/SPRY2 in Cell Proliferation and Apoptosis in Bladder Cancer

Author:

Hong Yangchun,Li Zhen,Su Yixin,Pu Hexian,Zhang Xiuxiu

Abstract

Bladder cancer (BC) is the second most common genitourinary malignancy. Long noncoding RNA (lncRNA) is implicated in BC progression. This study delved into the underlying mechanism of lncRNA MEG3 in BC. Bioinformatics analysis predicted the expression of lncRNA MEG3, its association with the survival of BC patients, its subcellular localization, and its binding sites with miR-21-5p. Differentially expressed genes (DEGs) in the GSE13507 chip were analyzed using GEOexplorer, downstream targets of miR-21-5p were predicted from databases, and the overlapping genes were analyzed by the website Venny2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html); their impacts on patient survival were analyzed by the Starbase database. The expression of SPRY2 and TGFBI associated with patient survival was analyzed in TCGA. RT-qPCR and western blot were performed to detect levels of MEG3, miR-21-5p, and SPRY2 in BC/SV-HUC-1 cells. Malignant biological behaviors of BC cells were detected using CCK8, flow cytometry, and Transwell assays. RNA pull-down and dual-luciferase assays were employed to verify the binding relationship of miR-21-5p with MEG3 and SPRY2. MEG3 was found to be lowly expressed in BC cells and mainly distributed in the cytoplasm. Over-expression of MEG3 was found to inhibit BC cell activity, promote apoptosis, and reduce invasion and migration. miR-21-5p was found to be highly expressed in BC cells, and its down-regulation was found to inhibit the malignant behavior of BC cells. Over-expression of miR-21-5p was found to reverse the effect of pcDNA3.1-MEG3 on BC cells. MEG3 was found to competitively bind to miR-21-5p as a ceRNA to promote SPRY2 levels. LncRNA MEG3 promotes SPRY2 expression by competitively binding to miR-21-5p, thereby inhibiting proliferation and promoting apoptosis of BC cells.

Publisher

Begell House

Subject

Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3