COLLISION MORPHOLOGIES SUPERCOOLED WATER DROPLETS ON SMALL LOW-TEMPERATURE SUPERHYDROPHOBIC SPHERICAL TARGETS

Author:

Liu Xin,Zhang Xuan,Min Jingchun,Guo Yiqing,Wu Xiaomin

Abstract

The collision and freezing of supercooled water droplets exist in many fields and are usually uncon-ducive. The superhydrophobic surfaces used for anti-icing generally have microstructures or local protrusions which could be simplified as small spherical targets comparable to the droplet in size. The supercooled water droplets' collision and freezing on small low-temperature superhydrophobic spherical targets with the sphere-to-droplet diameter ratio D* ≤ 1 are studied numerically in this work. Coupling the solidification-melting model, the Volume of Fluid (VOF) method is used to implement numerical simulations. The supercooling degree, Weber number, and sphere-to-droplet diameter ratio effects on the collision and freezing behaviors and the area coverage ratio of the droplet on the low-temperature small sphere are investigated. Six typical morphologies are identified: full dripping, partial dripping, lower adhesion, wrapping adhesion, upper adhesion, and rebound. The water droplet is found to be more likely to drip down with the increasing Weber number, and the decreasing supercooling degree and the decreasing diameter ratio. A comprehensive morphology map is eventually established to illustrate the combined influence of the Weber number and diameter ratio on the occurrences of the rebound, adhesion, and dripping for different supercooling degrees. This work provides theoretical guidance for the engineering design and structural optimization of anti-icing surfaces.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3