Back to the Future: Quantifying Wing Wear as a Method to Measure Mosquito Age

Author:

Gray Lyndsey1,Asay Bryce C.2,Hephaestus Blue2,McCabe Ruth3,Pugh Greg1,Markle Erin D.1,Churcher Thomas S.3,Foy Brian D.1

Affiliation:

1. Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado;

2. Viden Technologies LLC, Laramie, Wyoming;

3. MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom

Abstract

ABSTRACT. Vector biologists have long sought the ability to accurately quantify the age of wild mosquito populations, a metric used to measure vector control efficiency. This has proven challenging due to the difficulties of working in the field and the biological complexities of wild mosquitoes. Ideal age grading techniques must overcome both challenges while also providing epidemiologically relevant age measurements. Given these requirements, the Detinova parity technique, which estimates age from the mosquito ovary and tracheole skein morphology, has been most often used for mosquito age grading despite significant limitations, including being based solely on the physiology of ovarian development. Here, we have developed a modernized version of the original mosquito aging method that evaluated wing wear, expanding it to estimate mosquito chronological age from wing scale loss. We conducted laboratory experiments using adult Anopheles gambiae held in insectary cages or mesocosms, the latter of which also featured ivermectin bloodmeal treatments to change the population age structure. Mosquitoes were age graded by parity assessments and both human- and computational-based wing evaluations. Although the Detinova technique was not able to detect differences in age population structure between treated and control mesocosms, significant differences were apparent using the wing scale technique. Analysis of wing images using averaged left- and right-wing pixel intensity scores predicted mosquito age at high accuracy (overall test accuracy: 83.4%, average training accuracy: 89.7%). This suggests that this technique could be an accurate and practical tool for mosquito age grading though further evaluation in wild mosquito populations is required.

Publisher

American Society of Tropical Medicine and Hygiene

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism;Frontiers in Cellular and Infection Microbiology;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3