Towards next generation cyber-physical systems and digital twins for construction

Author:

Akanmu Abiola A.,Anumba Chimay J.,Ogunseiju Omobolanle O.

Abstract

The construction industry continues to seek innovative ways to safely, timely and cost-effectively deliver construction projects. Several efforts have been made to automate construction processes but marginial success has been achieved in effectively reducing the long standing risks suffered by the industry. While industry 4.0 promises to improve project efficiency, reduce waste and improve productivity, the transition to this will depend on the successful adoption of many emerging technologies such as virtual design modeling technologies, sensing technologies, data analysis, storage and communication technologies, human-computer interaction technologies, and robotics. To accelerate innovation, digital twins and cyber-physical systems will be a necessity to advance automation and real-time control with these technologies. While digital twin represents a digital replica of the asplanned and as-built facility, cyber physical systems involve integration of physical systems with their digital replica through sensors and actuators. Despite evidence of the efficacy of cyber-physical systems and digital twins for reducing non-fatal injuries, enhancing safety management, improving progress monitoring and enhancing performance monitoring and control of facilities, their adoption in the construction industry is still in its infancy. This paper sheds light on the opportunities offered by cyber-physical systems and digital twins in other industry sectors and advocates for their increased deployment in the construction industry. This paper describes cyber-physical integration of emerging technologies with the physical construction or constructed facility as the next generation digital twin and cyber-physical systems. Potential scenarios of next generation cyber physical system and digital twin for improving workforce productivity, health, and safety, lifecycle management of building systems, and workforce competency are presented.

Publisher

International Council for Research and Innovation in Building and Construction

Subject

Computer Science Applications,Building and Construction,Civil and Structural Engineering

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3