Temperature Dependent Anomalous Threshold Voltage Modulation of a-IGZO TFT by Incorporating Variant Gate Stresses

Author:

Aslam Muhammad,Chang Shu-WeiORCID,Chen Yi-Ho,Lee Yao-JenORCID,Li Yiming,Lee Wen-HsiORCID

Abstract

Amorphous indium gallium zinc oxide (a-IGZO) has recently made significant advancement as a key material for electronic component design owing to its compatibility with complementary metal oxide semiconductor technologies. A comprehensive analysis of reliability-related issues is required to determine the true potential of a-IGZO-based devices for next-generation electronics applications. To address this objective, we electrically characterize scaled-channel a-IGZO thin film transistors (TFTs) under positive bias (temperature) stress (PB(T)S). Both PBS and PBTS are characterized by positive and negative Vth shift, respectively, during the various gate stresses. In particular, the negative Vth shift is explained by the generation of donor-like traps stimulated by ionization of oxygen vacancy/hydrogen at elevated temperature. The TFTs exhibit relatively decent stability during the PBS operation. The analysis of devices with variant channel dimensions implies that long-channel devices exhibit relatively higher stability and performance compared to the short-channel ones. We also observe that the Vth can be controllably adjusted by employing the top gate (TG) with bottom gate sweep. Moreover, the stress-induced partial recovery mechanism is experimentally observed owing to detrapping of charges. Generally, the reported results infer a perceptive understanding of scaled-channel a-IGZO-TFTs which helps with shaping performance-enhancement strategies.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3