Structural, Microstructural, and Electrical Properties Study of Pb(Sn0.45Ti0.55)O3 Ceramics

Author:

Das Bhakti Pada,Patnaik Bhabani Sankar,Jena Tanmaya,Nayak Sailabhama,Nayak Geetanjali,Bhoi Krishnamayee,Sahu Uttam,Mahapatra Prasanta Kumar,Choudhary Ram Naresh Prasad,Karmakar Subrata,Mohanty Hari SankarORCID

Abstract

We undertook a comprehensive investigation of the the structural, dielectric, and electrical characteristics of Pb(Sn0.45Ti0.55)O3 ceramics prepared using the conventional solid-state route. A meticulous preparation protocol, involving solvating various precursors, was followed by extensive characterization employing X-ray diffraction, scanning electron microscopy, and dielectric studies. The synthesized sample features a single-phase tetragonal structure with P4mm symmetry. Using impedance spectroscopy, electrical transport properties of the polycrystalline Pb(Sn0.45Ti0.55)O3(PST) ceramic were studied in detail. Relaxation and conduction mechanisms of the material were inferred using complex impedance, complex electric modulus, and frequency dependent ac conductivity analysis. Impedance spectroscopy results reveal the range of frequencies in which the grain, grain boundary, and electrode effects are dominant. Above certain temperatures, the imaginary component of impedance (Z//) exhibits some resonant type peaks at different frequencies indicating relaxor nature of the sample. The activation energy obtained for both the relaxation and conduction process indicates the role of doubly-ionized oxygen vacancy in the conduction mechanism of the sample. The dielectric relaxation occurring at low frequency and high temperatures is related to the space charges associated with the ionized oxygen vacancies being trapped at the grain boundaries. The Cole-Cole plots confirm the poly-dispersive nature of dielectric relaxation in the sample.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3