Abstract
In recent years, betavoltaic batteries have become an ideal power source for micro electromechanical systems. Betavoltaic battery is a device that converts the decay energy of beta emitting radioisotope sources into electrical energy using transducers. They have the advantages of high energy density, long service life, strong anti-interference ability, small size, light weight, easy miniaturization and integration, thus it has become a research hotspot in the field of micro energy. However, to date, the low energy conversion efficiencies as well as technological limitations of betavoltaic batteries impede their further application. In this review, the theory of betavoltaic energy conversion and recent understanding of the ideal material and structure design of the betavoltaic batteries for efficient exciton production, dissociation and charge transport is described, as well as recent attempts to realize optimum results. This review article concludes by identifying the remaining challenges for the improvement of battery performance and by providing perspectives toward real application of betavoltaic batteries.
Funder
Fundamental research funds the central universities
Wuhu and Xidian University special fund for industry- university-research cooperation
National Natural Science Foundation of China
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献