Fabrication of Copper / Single-Walled Carbon Nanotube Composite Plating Films By Electrodeposition

Author:

Kirihata Kyohei,Arai Susumu,Uejima Mitsugu,Hirota Mitsuhito

Abstract

Introduction Copper has many excellent properties such as high electrical conductivity and good thermal conductivity and ductility, resulting in the wide use of copper plating in the electronics industry. Single-walled carbon nanotubes (SWCNTs) also exhibit attractive characteristics such as stable electrical resistance in the presence of high currents and good thermal conductivity and field emission properties, resulting in their application in a wide range of fields. Cu/SWCNT composites would therefore be expected to have excellent electrical and thermal conductivity properties.Our laboratory previously reported the fabrication of electroless Cu/SWCNT composite plating films, 1)but the fabrication of Cu/SWCNT composite plating films by electrodeposition has not been reported.Here we describe an attempt to fabricate Cu/SWCNT composite plating films with homogeneously distributed SWCNTs using electrodeposition. Experimental The Cu/SWCNT composite plating bath comprised 0.1 M CuSO4・5H2O, 0.2 M EDTA・2Na, SWCNTs (Super-growth SWCNTs, Zeon Co.) and dispersants. EDTA・Na was used as a copper chelating agent. A magnetic stirrer, an ultrasonic homogenizer and a mechanical atomizer (Star Burst Labo, SUGINO MACHINE Co.) were used to fragment the SWCNT bundles. The dispersibility of the SWCNTs was evaluated using a particle size distribution analyzer. Electrodeposition was conducted under galvanostatic conditions. A pure copper plate and a phosphorus-containing copper plate were used as cathode and anode, respectively. The morphologies of the composite films were observed by field emission scanning electron microscopy (FE-SEM) and the phase structures of the films were analyzed by X-ray diffraction. The thermal and electrical conductivities of the composite films were also evaluated. In addition, the SWCNTs were quantitatively analyzed. Results and Discussion  The results demonstrated that fragmentation of the SWCNTs was improved significantly by using a mechanical atomizer. The content of SWCNTs in the films increased with increasing SWCNT concentration in the plating bath. Fig. 1 shows a surface SEM image of a prepared Cu/SWCNT composite plating film and indicates that the SWCNTs are incorporated relatively uniformly into the Cu film. The diameter of the SWCNTs is ca. 15 nm or less, indicating that the bundles of SWCNTs are highly fragmented. References 1) T. Osaki, S. Arai, Abstract of ADMETAPlus 2013 Asian Session (2013) 86 Figure 1

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3