Low-Temperature Water Electrolysis Under a Sustained pH-Gradient for Electrochemically-Induced Decarbonation of Limestone into Hydrated Lime

Author:

Rouxhet Rémy,Loudeche Maxime,Santoro Ronny,Proost JorisORCID

Abstract

Lime holds considerable potential in diverse environmental applications. However, its current production remains highly carbon-intensive, emitting more than one ton of CO2 per ton of lime. To address this issue, recent studies have explored the concept of electrifying the decarbonation of limestone to produce hydrated lime. In this work, a two-compartment electrolysis cell capable of producing Ca(OH)2 has been tested at different currents. Precise pH and Ca2+ concentration measurements demonstrate that the electrolysis setup is able to dissolve CaCO3 and precipitate Ca(OH)2 with near-perfect efficiencies. Notably, it highlights that Faraday’s law and the concept of transport number can be applied to predict both the equilibrium and kinetic behavior of each step of the process in each of the two cell compartments. Moreover, the use of controlled batch additions of CaCO3 in the system, as opposed to one-time excess addition, was assessed to mitigate the fouling of the cationic exchange membrane used to separate the compartments. Finally, based on the experimental findings, key guidelines are proposed to achieve a perfect reaction stoichiometry for each step. These findings pave the way for a more sustainable and environmentally friendly approach to lime production.

Funder

Service Public de Wallonie

Publisher

The Electrochemical Society

Reference39 articles.

1. A pathway to negative CO2 emissions by 2050;European Lime Association,2023

2. Lime in the limelight;Dowling;J. Clean. Prod.,2015

3. An investigation of the global uptake of CO2 by lime from 1930 to 2020;Bing;Earth System Science Data,2023

4. Cleaner production in a small lime factory by means of process control;George;J. Clean. Prod.,2010

5. LEILAC: low cost CO2 capture for the cement and lime industries;Hillsa;Energy Procedia,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3