Hybrid-MPET: An Open-Source Simulation Software for Hybrid Electrode Batteries

Author:

Liang QiaohaoORCID,Bazant Martin Z.ORCID

Abstract

As the design of single-component battery electrodes has matured, the battery industry has turned to hybrid electrodes with blends of two or more active materials to enhance battery performance. Leveraging the best properties of each material while mitigating their drawbacks, multi-component hybrid electrodes open a vast new design space that could be most efficiently explored through simulations. In this article, we introduce a mathematical modeling framework and open-source battery simulation software package for Hybrid Multiphase Porous Electrode Theory (Hybrid-MPET), capable of accounting for the parallel reactions, phase transformations and multiscale heterogeneities in hybrid porous electrodes. Hybrid-MPET models can simulate both solid solution and multiphase active materials in hybrid electrodes at intra-particle and inter-particle scales. Its modular design also allows the combination of different active materials at any capacity fraction. To illustrate the novel features of Hybrid-MPET, we present experimentally validated models of silicon-graphite (Si-Gr) anodes used in electric vehicle batteries and carbon monofluoride (CFx) - silver vanadium oxide (SVO) cathodes used in implantable medical device batteries. The results demonstrate the potential of Hybrid-MPET models to accelerate the development of hybrid electrode batteries by providing fast predictions of their performance over a wide range of design parameters and operating protocols.

Funder

Medtronic PLC

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3