Refractive Laser Beam Measuring Diffusion Coefficient of Concentrated Battery Electrolytes

Author:

Betts KatherineORCID,Heenkenda K. Y.ORCID,Jacome BryanORCID,Kim Sohyo,Tovar Michael,Feng ZhangeORCID

Abstract

A thorough understanding of electrolyte transport properties is crucial in the development of alternative battery technology. As a key parameter, the diffusion coefficient offers important insights into the behavior of electrolytes, especially for fast charge of high-energy batteries. Existing methods of measurement are often limited by redox species or offer questionable accuracy due to side reactions and/or disruption of the diffusion profile. This work provides a novel optical method for measuring diffusion coefficients of liquid-phase concentrated battery electrolytes without electrochemical reactions. The method relies on the deflection of a refractive laser beam passing through an electrolyte of a minor concentration gradient in a triangular diffusion column. The diffusion coefficient, D, for a range of zinc sulfate electrolytes was successfully extracted by correlating the position of the laser beam to its concentration. Several other physicochemical properties of the same electrolytes are studied to correlate to the concentration-dependent diffusion coefficients, including viscosity, conductivity, and microstructure analysis based on vibrational spectroscopy (Infrared and Raman). Also included is the future application of the triangular column for in situ electrochemical measurements.

Funder

NSF

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3