The Effect of Chlorides on the Performance of DME/Mg[B(HFIP)4]2 Solutions for Rechargeable Mg Batteries

Author:

Dlugatch BenORCID,Drews JaninaORCID,Attias RanORCID,Gavriel BarORCID,Ambar Adar,Danner TimoORCID,Latz ArnulfORCID,Aurbach DoronORCID

Abstract

One of the major issues in developing electrolyte solutions for rechargeable magnesium batteries is understanding the positive effect of chloride anions on Mg deposition-dissolution processes on the anode side, as well as intercalation-deintercalation of Mg2+ ions on the cathode side. Our previous results suggested that Cl ions are adsorbed on the surface of Mg anodes and Chevrel phase MgxMo6S8 cathodes. This creates a surface add-layer that reduces the activation energy for the interfacial Mg ions transportation and related charge transfer, as well as promotes the transport of Mg2+ from the solution phase to the Mg anode surface and into the cathodes’ host materials. Here, this work further examines the effect of adding chlorides to the state-of-the-art Mg[B(HFIP)4]2/DME electrolyte solution, specifically focusing on reversible magnesium deposition, as well as the performance of Mg cells with benchmark Chevrel phase cathodes. It was observed that the presence of chlorides in these solutions facilitates both Mg deposition, and Mg2+ ions intercalation, whereby this effect is more pronounced as the purity level of the solution is lowered.

Funder

European Union’s Horizon 2020 research and innovation

German Research Foundation

BAR ILAN NANO TECHNOLOGY CENTER

Israeli Smart Transportation Research Center

Jewish National Fund

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3