Experimental and Model Investigation of a Solid Oxide Fuel Cell Operated Under Low Fuel Flow Rate

Author:

Neri Jacopo,Cammarata Alberto,Donazzi AlessandroORCID

Abstract

A state-of-the-art anode-supported Ni-YSZ/YSZ/GSC/LSC SOFC with 16 cm2 cathode area was tested at low anodic flow rate (6.25 Ncc min−1 cm−2) and large excess of air (93.75 Ncm3 min−1 cm−2). These conditions are typical of stacks, where high H2 utilization is targeted, but are uncommon in single cell testing. H2-based mixtures were supplied between 550 °C and 750 °C, varying the partial pressure of H2 (between 93% and 21% with 7% H2O mol/mol) and H2O (between 10% and 50% H2O with 50% H2). I/V and EIS measurements were collected and analyzed with a 1D+1D model of a SOFC with rectangular duct interconnectors. At 750 °C and 93% H2, 58% fuel utilization was obtained, which raised to 81% at 21% H2, driving the SOFC under internal diffusion control. The model analysis confirmed that nearly-isothermal conditions were retained thanks to efficient heat dissipation, and that air acted as a coolant. During testing, the contact resistance grew to 0.16 Ω cm2 at 750 °C, limiting the SOFC’s performance to a maximum power density of 340 W cm−2 with 7% humidified H2. The kinetic parameters of the anodic reaction were derived by fitting, finding a positive order for H2 (+0.9), and a negative order for H2O (−0.58).

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3