Conceptual Design of Solid-State Li-Battery for Urban Air Mobility

Author:

Toghyani S.ORCID,Cistjakov W.,Baakes F.ORCID,Krewer U.ORCID

Abstract

The negative impact of internal combustion engines on the environment is a major concern in metropolitan areas due to the continued rapid growth and high overall level in the number of vehicles, population, and traffic congestion. Electric vertical take-off and landing (eVTOL) aircraft promises a new era for urban regional transportation and air mobility to address the challenges mentioned above. Nonetheless, providing electrical energy storage systems, like batteries, is one of the key issues with such aircraft. Here, the non-flammable technology of all-solid-state Li batteries with high theoretical gravimetric energy is an attractive option. Modelling allows for a knowledge-driven assessment of the potential of this technology. We here used a combination of a pseudo-2-dimensional cell model with a microstructure surrogate model approach to acquire a better understanding of the effect of the cathode microstructure on the internal process limitations. This model is incorporated into a global optimisation algorithm to predict optimum battery size with respect to the dynamic load demand of eVTOL. When carbon black and active materials are premixed, the battery performs better than when solid electrolyte and active materials are premixed, particularly for low amounts of carbon black in the cathode combination, i.e., 5%. Further, results indicate that future electrification of transportation powertrains would necessitate optimising the composition and distribution of electrode components to fulfil the high demands for power and energy density. By enhancing transport through the microstructure and improving the material’s intrinsic conductivity, it is possible to significantly increase the effective diffusivity and conductivity of ASSB, and hence the mission range.

Funder

Horizon 2020 Framework Programme

Deutsche Forschungsgemeinschaft

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3