Abstract
The performance degradation of solid oxide fuel cells (SOFC) is directly related to the damage and fracture of electrode microstructures. In this study, the phase field fracture method is used to simulate the fracture of anode microstructures, and the effects of boundary constraints, thermal load, and Ni phase on the fracture of Ni–YSZ anode microstructures are investigated. Results show that tensile stresses occur in the Ni and YSZ phases whether above or below the reference temperature. The cracks propagate along the direction perpendicular to the first principal stress, showing a brittle fracture characteristic. When the microstructure is cooled, all cracks appear in YSZ phase, and almost all cracks initiate at the lowest point of YSZ–pore concave interface. When the microstructure is heated, the tensile first principal stress induces few cracks at local positions but will not make the cracks propagate continuously. The thermal mismatch between Ni and YSZ is not enough to induce cracks, and the fracture of electrode microstructure is more likely to be caused by external tensile load or the thermal mismatch between anode and electrolyte layers. The presence of Ni increases the stiffness of the microstructure, and solid phase’s disconnection reduces the strength of the microstructure.
Funder
National Natural Science Foundation of China
Zhuhai Innovation and Entrepreneurship Team Project
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献