Challenging Practices of Algebraic Battery Life Models through Statistical Validation and Model Identification via Machine-Learning

Author:

Gasper PaulORCID,Gering Kevin,Dufek Eric,Smith Kandler

Abstract

Various modeling techniques are used to predict the capacity fade of Li-ion batteries. Algebraic reduced-order models, which are inherently interpretable and computationally fast, are ideal for use in battery controllers, technoeconomic models, and multi-objective optimizations. For Li-ion batteries with graphite anodes, solid-electrolyte-interphase (SEI) growth on the graphite surface dominates fade. This fade is often modeled using physically informed equations, such as square-root of time for predicting solvent-diffusion limited SEI growth, and Arrhenius and Tafel-like equations predicting the temperature and state-of-charge rate dependencies. In some cases, completely empirical relationships are proposed. However, statistical validation is rarely conducted to evaluate model optimality, and only a handful of possible models are usually investigated. This article demonstrates a novel procedure for automatically identifying reduced-order degradation models from millions of algorithmically generated equations via bi-level optimization and symbolic regression. Identified models are statistically validated using cross-validation, sensitivity analysis, and uncertainty quantification via bootstrapping. On a LiFePO4/Graphite cell calendar aging data set, automatically identified models utilizing square-root, power law, stretched exponential, and sigmoidal functions result in greater accuracy and lower uncertainty than models identified by human experts, and demonstrate that previously known physical relationships can be empirically “rediscovered” using machine learning.

Funder

U.S. Department of Energy Vehicle Technologies Office

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3