Gas Transport Resistance of Hydrocarbon-Based Catalyst Layers in Proton-Exchange Membrane Fuel Cells

Author:

Liepold HannesORCID,Nguyen HienORCID,Heizmann Philipp A.ORCID,Klose CarolinORCID,Vierrath SeverinORCID,Münchinger AndreasORCID

Abstract

Recent developments in hydrocarbon-based proton exchange membrane fuel cells have significantly narrowed the performance gap compared to state-of-the-art cells using perfluorosulfonic acid ionomers (PFSA). However, balancing protonic resistance and gas transport resistance in the catalyst layer remains a challenge at low humidity. This study investigates gas transport resistance and its components in sulfonated phenylated polyphenylene-based catalyst layers using various limiting current methods. Results show that increasing the dry ionomer to carbon (I/C) ratio from 0.2 to 0.4, a measure to catch up with protonic resistance of PFSA-based catalyst layers, significantly increases gas transport resistance in the cathode catalyst layer by 28 %. The data suggest a strong correlation between local gas transport resistance and IEC. A high IEC is beneficial for the gas transport through the ionomer film. However, at low ionomer volume fractions the local gas transport resistance is dominated by the I/C independent interfacial resistance. Furthermore, a low IEC hydrocarbon ionomer, such as Pemion® PP1-HNN4–00-X (IEC = 2.5 meq g−1), not only exhibits a beneficial interfacial resistance, but also suppresses excessive ionomer swelling, which typically occurs during operating conditions where liquid water is forming.

Funder

Bundesministerium fuer Digitales und Verkehr

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3