Machine-Learning Assisted Identification of Accurate Battery Lifetime Models with Uncertainty

Author:

Gasper PaulORCID,Collath Nils,Hesse Holger C.,Jossen AndreasORCID,Smith KandlerORCID

Abstract

Reduced-order battery lifetime models, which consist of algebraic expressions for various aging modes, are widely utilized for extrapolating degradation trends from accelerated aging tests to real-world aging scenarios. Identifying models with high accuracy and low uncertainty is crucial for ensuring that model extrapolations are believable, however, it is difficult to compose expressions that accurately predict multivariate data trends; a review of cycling degradation models from literature reveals a wide variety of functional relationships. Here, a machine-learning assisted model identification method is utilized to fit degradation in a stand-out LFP-Gr aging data set, with uncertainty quantified by bootstrap resampling. The model identified in this work results in approximately half the mean absolute error of a human expert model. Models are validated by converting to a state-equation form and comparing predictions against cells aging under varying loads. Parameter uncertainty is carried forward into an energy storage system simulation to estimate the impact of aging model uncertainty on system lifetime. The new model identification method used here reduces life-prediction uncertainty by more than a factor of three (86% ± 5% relative capacity at 10 years for human-expert model, 88.5% ± 1.5% for machine-learning assisted model), empowering more confident estimates of energy storage system lifetime.

Funder

U.S. Department of Energy, Office of Vehicle Technologies

Bavarian Research Foundation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3