Redox Mechanism Contributions to the Behaviour of Electrochemical Capacitor Materials

Author:

Forghani Marveh,Cameron Amanda P.,Donne Scott W.ORCID

Abstract

The mechanisms of charge storage in four typical electrochemical capacitor systems are compared and contrasted. These systems are based on activated carbon, ruthenium dioxide, manganese dioxide and nickel hydroxide. Charge storage is discussed in terms of charge delocalization either on the surface or throughout the electrode material. Electrical double layer formation, such as on activated carbon, is considered an example of charge delocalization, with charge distributed over the electrolyte accessible surface irrespective of the applied potential. Ruthenium dioxide also stores delocalized charge, in this case through the reversible Ru(IV)/Ru(III) redox couple. Manganese dioxide is unique in that in alkaline (battery) electrolytes charge is localized in specific structural domains, while in neutral (capacitor) electrolytes charge is delocalized over the material structure. Nickel hydroxide in an alkaline electrolyte is an example of charge localization when redox cycling due to its two-phase redox mechanism. The impact of these differing charge storage mechanisms on electrochemical performance is discussed.

Funder

University of Newcastle Australia

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3