Exploring Li-Ion Transport Properties of Li3TiCl6: A Machine Learning Molecular Dynamics Study

Author:

Selvaraj Selva ChandrasekaranORCID,Koverga Volodymyr,Ngo Anh T.

Abstract

We performed large-scale molecular dynamics simulations based on a machine-learning force field (MLFF) to investigate the Li-ion transport mechanism in cation-disordered Li3TiCl6 cathode at six different temperatures, ranging from 25°C to 100°C. In this work, deep neural network method and data generated by ab − initio molecular dynamics (AIMD) simulations were deployed to build a high-fidelity MLFF. Radial distribution functions, Li-ion mean square displacements (MSD), diffusion coefficients, ionic conductivity, activation energy, and crystallographic direction-dependent migration barriers were calculated and compared with corresponding AIMD and experimental data to benchmark the accuracy of the MLFF. From MSD analysis, we captured both the self and distinct parts of Li-ion dynamics. The latter reveals that the Li-ions are involved in anti-correlation motion that was rarely reported for solid-state materials. Similarly, the self and distinct parts of Li-ion dynamics were used to determine Haven’s ratio to describe the Li-ion transport mechanism in Li3TiCl6. Obtained trajectory from molecular dynamics infers that the Li-ion transportation is mainly through interstitial hopping which was confirmed by intra- and inter-layer Li-ion displacement with respect to simulation time. Ionic conductivity (1.06 mS/cm) and activation energy (0.29eV) calculated by our simulation are highly comparable with that of experimental values. Overall, the combination of machine-learning methods and AIMD simulations explains the intricate electrochemical properties of the Li3TiCl6 cathode with remarkably reduced computational time. Thus, our work strongly suggests that the deep neural network-based MLFF could be a promising method for large-scale complex materials.

Funder

Vehicle Technologies Office

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3