Abstract
Analytical model for impedance of oxygen transport in the gas–diffusion layer (GDL) and cathode channel of a PEM fuel cell is developed. The model is based on transient oxygen mass conservation equations coupled to the proton current conservation equation in the catalyst layer. Analytical formula for the “GDL+channel” impedance is derived assuming fast oxygen and proton transport in the cathode catalyst layer (CCL) In the Nyquist plot, the transport impedance consists of two arcs describing oxygen transport in the air channel (low–frequency arc) and in the GDL. The characteristic frequency of GDL arc depends on the CCL thickness: large CCL thickness strongly lowers this frequency. At small CCL thickness, the high–frequency feature on the arc shape forms. This effect is important for identification of peaks in distribution of relaxation times spectra of low–Pt PEMFCs.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献