Kinetic Analysis of Sodium-Ion Intercalation Reaction into Graphene-Like Graphite by Electrochemical Impedance Spectroscopy

Author:

Inamoto JunichiORCID,Aga Koki,Inoo AkaneORCID,Matsuo YoshiakiORCID

Abstract

Graphene-like graphite (GLG) is a promising anode material for sodium-ion batteries, which is believed to have unique kinetic properties compared to hard carbon due to its different intercalation mechanism. In this study, electrochemical impedance spectroscopy was used to investigate the kinetic properties of sodium-ion intercalation in GLG. Our results indicated that the activation energies for interfacial sodium-ion transfer of GLGs were nearly identical to those reported for graphite, regardless of the heat treatment temperature of the GLGs. Furthermore, these activation energies were lower than those observed for hard carbon, suggesting better sodium-ion intercalation kinetics. In addition, the diffusion coefficient of sodium ions in the GLG was similar to that of graphite, with the highest value observed for GLG800, the GLG heat-treated at the highest temperature of 800 °C. This may indicate that the diffusion coefficient increases with the presence of nanopores in the graphene layer of GLG. It has also been reported that GLG800 is superior in terms of reversible capacity and working potential compared to GLGs synthesized at other temperatures. Consequently, the results clearly demonstrated that GLG800 has the best electrochemical properties in terms of both thermodynamics and kinetics among the GLGs investigated in this study.

Funder

Japan Society for the Promotion of Science

Iwatani Naoji Fundation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3