Operando XAS to Illustrate the Importance of Electronic Conductivity in Vanadyl Phosphate Systems

Author:

Zuba MateuszORCID,Rana Jatinkumar,Siu CarrieORCID,Buyuker IsikSuORCID,Sulicz Ewa,Zhou HuiORCID,Chernova Natasha,Zhang Hanlei,Zhou Guangwen,Whittingham M. Stanley,Piper Louis F. J.

Abstract

Multi-electron cathodes are an exciting class of energy storage materials that can intercalate more than one alkali-ion per transition metal. One such case, nano-sized ε-VOPO4 can intercalate two Li-ions to obtain the theoretical capacity of 305 mAh g−1, despite its inherently poor ionic and electronic conductivity. While carbon additives can compensate for cathode material’s poor conductivity, the type of carbon additive can play a key role in achieving full theoretical capacity of ε-VOPO4. Here, we explore the electrochemical behavior of two sourced carbons while systematically tracking V valence through operando X-ray absorption spectroscopy. The degree of V redox largely depends on the carbon additive’s electrical conductivity and surface coverage, with graphene enabling full 2 li-ion (de)intercalation whereas the use of acetylene black leads to trapped Li-ion. In both cases however, side reactions are promoted when the limits of facile Li (de)intercalation are reached resulting in excess capacities inconsistent with V valence. This excess capacity is more strongly correlated to carbon loading and surface area of the carbon additive rather than any exotic redox mechanism of ε-VOPO4 such as oxygen redox.

Funder

NECCES, EFRC, U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3