An Optimized MnO2-Ag Nanocomposite-Based Sensing Platform for Determination of 4-nitrophenol in Tomato Samples: Influences of Morphological Aspect of MnO2 Nanostructures and Synergic Effect on Electrochemical Kinetic Parameters and Analytical Performance

Author:

Nguyen Le Nhat Trang,Pham Tuyet NhungORCID,Ong Van Hoang,Dao Thi Nguyet Nga,Hoa Nguyen Quang,Oanh Vu Thi Kim,Vu Dinh Lam,Le Anh-TuanORCID

Abstract

We have introduced potential modifiers synthesized from attached Ag nanoparticles (NPs) on MnO2 nanostructural surfaces, and fabricated an electrochemical sensor toward 4-nitrophenol (4-NP) detection. MnO2 with various morphologies (nanowires, nanorods, and nanosheets) has been prepared by hydrothermal and microwave-assisted hydrothermal methods, while AgNPs have been prepared by the simple electrochemical method. The structural characteristics and surface morphologies have been investigated via X-ray diffraction and scanning electron microscopy measurements. The effect of the change in morphology on the electrochemical behaviors and sensing performance has been investigated and discussed in detail. A parameter series involving the redox reaction of [Fe(CN)6]3−/4− and 4-NP reduction process has been calculated for each as-prepared modified electrode. Electrochemical results evidenced that benefiting from possessing outstanding electrochemical behaviors such as better conductivity, faster electron transfer ability, larger electroactive surface area, and higher charge transfer kinetics, MnO2 sheets-Ag/SPE has offered wider linear concentration range of 0.5–50 μM, LOD value as low as 0.073 μM, and high selectivity/repeatability. Furthermore, the optimization in the morphological aspect of MnO2 nanosheets and synergic effects arising from the effective combination with AgNPs make it become a model material for modifying electrode surfaces, indicating great potential for advanced electrochemical sensing applications.

Funder

Phenikaa University

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3