Review on the thermal characteristics and applications of silicon nitride ceramics

Author:

Kim Ha-Neul,Park Young-Jo,Ko Jae-Woong,Lee Jae-Wook,Ma Ho-Jin

Abstract

As the heat generation problem is predicted to intensify due to the trend of integration and high density of the power semiconductor power module responsible for the electric drive of the electric vehicle, which has recently been in full swing, high-reliability materials and It is essential to secure large-area heat dissipation substrate manufacturing process technology, and technical obstacles to maintain reliability even in environmental changes such as severe cold/excessive heat are becoming issues.In the case of silicon nitride ceramic material, which is in the spotlight as a heat dissipation substrate material, a balance that meets the user’s needs is required. In order to realize excellent heat dissipation performance, it is necessary to reduce the thickness of the silicon nitride substrate, increase the thickness of the metal junction, and improve the thermal conductivity of the silicon nitride material. Therefore, the task of technological progress beyond the complementary relationship between heat conduction-intensity still remains.In this paper, various technical considerations for increasing the thermal conductivity of silicon nitride ceramics are described, and the direction of technological progress is described along with detailed examples. In order to improve thermal conductivity, it is necessary to minimize the inflow of impurities into the raw material powder, appropriately select sintering additives required for liquid phase sintering, and optimize the microstructure through minimization of the amorphous glass phase and control of grain growth by the gas pressure sintering process.

Funder

Ministry of Trade, Industry and Energy

Korea Evaluation Institute of Industrial Technology

Publisher

Ceramist

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3