Affiliation:
1. Novosibirsk state technical University
Abstract
The energy sector of Russia is transforming, followed by total electrification and gasification, which has radically changed the fuel landscape and allowed enterprises in various sectors of the economy to create their energy sources based on gas turbine and gas piston cogeneration plants. There are more and more balanced local intelligent energy systems for various purposes, more often operating autonomously, since the process of their integration with the unified energy system of Russia is impossible without power and energy output, which is contrary to the interests of generating companies, territorial grid organizations and the system operator. Overcoming the administrative and technological barriers and obstacles created by significant players in the electric power industry reduces the technical and economic efficiency of local intelligent energy systems that can bring considerable beneficial systemic effects.THE PURPOSE Substantiation of the obtained system effects from integrating local intelligent energy systems.METHODS. A systematic approach to identify the effects of the integration of local intelligent energy systems with the unified energy system of Russia.RESULTS. Local intelligent energy systems are considered objects of distributed electric power industry that perform certain system functions, which is accompanied by a change in the properties of reliability, efficiency and environmental friendliness of the production and transmission of heat and electricity, which leads to various effects. The presence and size of the effects are determined by the type and type of the local intelligent energy system. It is shown that the integration of communal local intelligent energy systems, created for the energy supply of the population and equivalent consumers, has a certain advantage.CONCLUSION. The integration of communal local intelligent energy systems makes it possible to increase the availability and uninterrupted power supply, reduce the negative impact of off-market surcharges and cross-subsidization, improve the uniformity of load schedules for generating and grid equipment, which increases the efficiency of the unified energy system of Russia.
Publisher
Kazan State Power Engineering University
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Reference23 articles.
1. Khokhlov A, Melnikov Y, Veselov F, Kholkin D, Datsko K. Raspredelennaya energetika v Rossii: potencial razvitiya. М: Energy Management Center of the Moscow School of Management Skolkovo. 2018; 87. Available at: http://www.energosovet.ru/stat/skolkovo_914.pdf Accessed: 26 Oct 2021.
2. Knjaginin VN, Holkin DV. Cifrovoj perehod v jelektrojenergetike Rossii. Center for Strategic Research. 2017; 47. Available at: https://www.csr.ru/uploads/2017/09/Doklad_energetika-Web.pdf Accessed: 01 Nov 2021.
3. Dilman MD, Filippov SP. Requirements for the fuel efficiency of promising cogeneration plants Izvestiya RAN. Energy. 2021; 5, 102–111.
4. Recaldea AA, Alvarez-Alvaradoa M. S. Design optimization for reliability improvement in microgrids with wind – tidal – photovoltaic generation Electric Power Systems Research, 2020; 188, 106540. Available at: https://www.sciencedirect.com/science/article/pii/S0378779620303448 Accessed: 18 Nov 2021. doi :10.1016/j.epsr.2020.106540
5. Hutty D, Dong S, Brown S. Suitability of energy storage with reversible solid oxide cells for microgrid applications Energy Conversion and Management. 2020; 226, 113499& Available at: https://eprints.whiterose.ac.uk/166255/ Accessed: 29 Oct 2021. doi: 10.1016/j.enconman.2020.113499
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献