English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1392-1402 DOI: 10.7536/PC171228 前一篇   后一篇

• 综述 •

纳米银的神经毒理学效应

张冰洁1,2, 刘倩1,2, 周群芳1,2*, 张建清3, 江桂斌1,2   

  1. 1. 中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室 北京 100085;
    2. 中国科学院大学资源环境学院 北京 100049;
    3. 深圳疾病预防控制中心 深圳 518055
  • 收稿日期:2017-12-19 修回日期:2018-03-25 出版日期:2018-09-15 发布日期:2018-06-28
  • 通讯作者: 周群芳 E-mail:zhouqf@rcees.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21477153,21461142001,21621064)、中国科学院前沿科学重点研究项目(No.14040302,QYZDJ-SSW-DQC017)和深圳三名工程项目(No.SZSM201811070)资助

Neurotoxicological Effects of Nanosilver

Bingjie Zhang1,2, Qian S. Liu1,2, Qunfang Zhou1,2*, Jianqing Zhang3, Guibin Jiang1,2   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
  • Received:2017-12-19 Revised:2018-03-25 Online:2018-09-15 Published:2018-06-28
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21477153, 21461142001, 21621064), the Chinese Academy of Sciences(No.14040302, QYZDJ-SSW-DQC017), and the Sanming Project of Medicine in Shenzhen(No.SZSM201811070).
纳米银是目前商品化程度最高的纳米材料之一。由于其独特的表面等离子共振性能、优良的抗菌活性,这种纳米材料已被广泛地应用于医药卫生、工业及日常生活等多个领域。随着纳米银应用领域的不断扩展,其生物安全性也受到了越来越多的关注。由于纳米银能够通过跨越血脑屏障等途径进入生物体脑部,因此纳米银的神经毒理学效应受到广泛关注,近年来已成为该领域研究热点之一。本综述总结了纳米银的脑累积效应以及进入脑组织的途径,主要包括经鼻通过嗅神经直接入脑和穿透血脑屏障。纳米银的神经毒性效应包括受暴露动物体的神经行为学改变、脑部的组织病理学效应或神经元和神经胶质细胞的形貌变化,与神经递质水平改变内在作用机制与氧化应激和炎性反应相关。纳米银的粒径、表面涂层和银离子释放是影响纳米银神经毒性的关键因素。本文最后提出当前纳米银神经毒理学研究中存在的问题及今后的研究方向。
Nanosilver is one of the most commercialized nanomaterials in the world. Due to its unique surface plasma resonance performance and excellent antibacterial activities, nanosilver has been widely used in many fields, such as medical area, health care, industrial products and our daily supplies. Meanwhile, the increasing application of nanosilver has drawn more and more attention to its biosafety. Previous toxicological studies have revealed diverse deleterious effects nanosilver may cause, wherein, neurotoxicity is highly concerned. This review mainly focuses on the neurotoxicological effects of nanosilver, and three aspects, including the bioaccumulation of nanosilver in brain and its penetration routes, neurotoxicological effects and the underlying molecular mechanisms, and the influencing factors, are comprehensively discussed. The administration of nanosilver through diverse ways could cause brain silver accumulation, and its penetration routes to the brain were mainly involved with the direct nasal olfactory nerve transfer and the translocation of the blood-brain barrier. The neurotoxicological effects of nanosilver were evidenced by neurobehavioral changes in the exposed animals, histopathological alteration in the brain or cellular morphological changes in neurons and neuroglia cells, and the disturbance in the neurontransmitter secretion. The underlying mechanisms were related with oxidative damage and inflammatory responses. The factors, including particle size, surface coating and silver ion release, would potentially determine nanosilver induced neurotoxicity. Finally, the existing problems in neurotoxicological studies on nanosilver are pointed out, and the future perspectives in this area are proposed. The review would be of great help to risk assessment of the production, application and disposal of nanosilver.
Contents
1 Introduction
1.1 Overview
1.2 The synthesis of nanosilver
1.3 The environmental release of nanosilver
1.4 The toxicological effects of nanosilver
2 The bioaccumulation of nanosilver in brain and its penetration routes
2.1 The bioaccumulation of nanosilver in brain
2.2 The penetration routes of nanosilver to brain
3 The neurotoxicological effects of nanosilver and its molecular mechanisms
3.1 Neurobehavioral changes
3.2 Histopathological effects
3.3 Neurotransmitter changes
3.4 The underlying molecular mechanisms
4 The key factors influencing the neurotoxicity of nanosilver
4.1 Particle size
4.2 Surface coating
4.3 Release of silver ions
5 Conclusion and perspective

中图分类号: 

()
[1] Chen X, Schluesener H J. Toxicol. Lett., 2008, 176:1.
[2] Vance M E, Kuiken T, Vejerano E P, McGinnis S P, Hochella M F, Rejeski D, Hull M S. Beilstein J. Nanotechnol., 2015, 6:1769.
[3] Anjugam M, Vaseeharan B, Iswarya A, Divya M, Prabhu N M, Sankaranarayanan K. Microbial Pathogenesis, 2018, 115:31.
[4] He C, Liu L, Fang Z, Li J, Guo J, Wei J. Ultrasonics Sonochemistry, 2014, 21:542.
[5] Lerner M I, Pervikov A V, Glazkova E A, Svarovskaya N V, Lozhkomoev A S, Psakhie S G. Powder Technology, 2016, 288:371.
[6] Pathrose B, Nampoori V P N, Radhakrishnan P, Sahira H, Mujeeb A. Optik-International Journal for Light and Electron Optics, 2016, 127:3684.
[7] Raudonyte-Svirbutaviciene E, Neagu A, Vickackaite V, Jasulaitiene V, Zarkov A, Tai C W, Katelnikovas A. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 351:29.
[8] Ping Y, Zhang J, Xing T L, Chen G Q, Tao R, Choo K H. Journal of Industrial and Engineering Chemistry, 2018, 58:74.
[9] Rivera-Rangel R D, González-Muñoz M P, Avila-Rodriguez M, Razo-Lazcano T A, Solans C. Colloids and Surfaces A, 2018, 536:60.
[10] Jogaiah S, Kurjogi M, Abdelrahman M, Hanumanthappa N, Tran L S P. Arabian Journal of Chemistry, 2017, DOI:10.1016/j.arabjc.2017.12.002.
[11] Quester K, Avalos-Borja M, Castro-Longoria E. Journal of Biomaterials and Nanobiotechnology, 2016, 7(2):8.
[12] Saravanan M, Barik S K, MubarakAli D, Prakash P, Pugazhendhi A. Microbial Pathogenesis, 2018, 116:221.
[13] Singh J, Mehta A, Rawat M, Basu S. Journal of Environmental Chemical Engineering, 2018, 6:1468.
[14] Sangaonkar G M, Pawar K D. Colloids and Surfaces B:Biointerfaces, 2018, 164:210.
[15] Ahluwalia V, Elumalai S, Kumar V, Kumar S, Sangwan R S. Microbial Pathogenesis, 2018, 114:402.
[16] Zeng J, Zheng Y Q, Rycenga M, Tao J, Li Z Y, Zhang Q, Zhu Y M, Xia Y N. Journal of the American Chemical Society, 2010, 132:8552.
[17] Khodashenas B, Ghorbani H R. Arabian Journal of Chemistry, 2015, DOI:10.1016/j.arabjc.2014.12.014.
[18] Zhang Q, Li W Y, Wen L P, Chen J Y, Xia Y N. Chemistry, 2010, 16:10234.
[19] Pietrobon B, McEachran M, Kitaev V. ACS Nano, 2009, 3:21.
[20] Pongrac I M, Ahmed L B, Mlinari D H, Jurasin D D, Pavi Dcc D I, Marjanovi D Cermak A M, Mili D M, Gajovi D S, Vinkovi D Vr Dc ek I. Journal of Trace Elements in Medicine and Biology, 2018, 50:684.
[21] Ren J T, Tilley R D. Journal of the American Chemical Society, 2007, 129:3287.
[22] Long Y M, Hu L G, Yan X T, Zhao X C, Zhou Q F, Cai Y, Jiang G B. International Journal of Nanomedicine, 2017, 12:3193.
[23] McShan D, Ray P C, Yu H T. J. Food Drug Anal., 2014, 22:116.
[24] Gottschalk F, Sonderer T, Scholz R W, Nowack B. Environmental Science & Technology, 2009, 43:9216.
[25] Pachapur V L, Dalila Larios A, Cledón M, Brar S K, Verma M, Surampalli R Y. Science of the Total Environment, 2016, 563/564:933.
[26] Unrine J M, Colman B P, Bone A J, Gondikas A P, Matson C W. Environ. Sci. Technol., 2012, 46:6915.
[27] Calder A J, Dimkpa C O, McLean J E, Britt D W, Johnson W, Anderson A J. Sci. Total. Environ., 2012, 429:215.
[28] Tang J L, Xiong L, Wang S, Wang J Y, Liu L, Li J G, Yuan F Q, Xi T F. Journal of Nanoscience and Nanotechnology, 2009, 9:4924.
[29] Kim Y S, Kim J S, Cho H S, Rha D S, Kim J M, Park J D, Choi B S, Lim R, Chang H K, Chung Y H, Kwon I H, Jeong J, Han B S, Yu I J. Inhal. Toxicol., 2008, 20:575.
[30] Sung J H, Ji J H, Park J D, Yoon J U, Kim D S, Jeon K S, Song M Y, Jeong J, Han B S, Han J H, Chung Y H, Chang H K, Lee J H, Cho M H, Kelman B J, Yu I J. Toxicol. Sci., 2009, 108:452.
[31] Kulthong K, Maniratanachote R, Kobayashi Y, Fukami T, Yokoi T. Xenobiotica, 2012, 42:854.
[32] El Mahdy M M, Eldin T A S, Aly H S, Mohammed F F, Shaalan M I. Experimental and Toxicologic Pathology, 2015, 67:21.
[33] Hudecova A, Hasplova K, Miadokova E, Magdolenova Z, Rinna A, Collins A R, Galova E, Vaculcikova D, Gregan F, Dusinska M. Cell Biochemistry and Function, 2012, 30:101.
[34] Elle R E, Gaillet S, Vide J, Romain C, Lauret C, Rugani N, Cristol J P, Rouanet J M. Food and Chemical Toxicology, 2013, 60:297.
[35] Kaewamatawong T, Banlunara W, Maneewattanapinyo P, Thammachareon C, Ekgasit S. Journal of Environmental Pathology Toxicology and Oncology, 2014, 33:59.
[36] Liu H L, Yang D F, Yang H L, Zhang H S, Zhang W, Fang Y J, Lin Z Q, Tian L, Lin B C, Yan J, Xi Z G. Journal of Hazardous Materials, 2013, 248:478.
[37] Scoville D K, Botta D, Galdanes K, Schmuck S C, White C C, Stapleton P L, Bammler T K, MacDonald J W, Altemeier W A, Hernandez M, Kleeberger S R, Chen L C, Gordon T, Kavanagh T J. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2017, 31:4600.
[38] Galbiati V, Cornaghi L, Gianazza E, Potenza M A, Donetti E, Marinovich M, Corsini E. Food and Chemical Toxicology, 2018, 112:363.
[39] Ema M, Okuda H, Gamo M, Honda K. Reproductive Toxicology, 2017, 67:149.
[40] Lafuente D, Garcia T, Blanco J, Sánchez D J, Sirvent J J, Domingo J L, Gómez M. Reproductive Toxicology, 2016, 60:133.
[41] Han J W, Jeong J K, Gurunathan S, Choi Y J, Das J, Kwon D N, Cho S G, Park C, Seo H G, Park J K, Kim J H. Nanotoxicology, 2016, 10:361.
[42] Amr El-Nouri M, Osama, Azmy M, Awatif, Ibraheim Elshal O, Ragab A, Hassan Ragab M, Elsherbini A. Study of the Effects of Silver Nanoparticles Exposure on the Ovary of Rats, 2013.
[43] Orbea A, González-Soto N, Lacave J M, Barrio I, Cajaraville M P. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2017, 199:59.
[44] Cambier S, Rogeberg M, Georgantzopoulou A, Serchi T, Karlsson C, Verhaegen S, Iversen T G, Guignard C, Kruszewski M, Hoffmann L, Audinot J N, Ropstad E, Gutleb A C. Science of the Total Environment, 2018, 610/611:972.
[45] Yoo M H, Rah Y C, Choi J, Park S, Park H C, Oh K H, Lee S H, Kwon S Y. International Journal of Pediatric Otorhinolaryngology, 2016, 83:168.
[46] Sayed A E D H, Soliman H A M. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2017, 822:34.
[47] Glinski A, Liebel S, Pelletier E, Voigt C L, Randi M A, Campos S X, Oliveira Ribeiro C A, Filipak Neto F. Toxicol. Mech. Methods, 2016, 26:251.
[48] Kim I, Lee B T, Kim H A, Kim K W, Kim S D, Hwang Y S. Chemosphere, 2016, 143:99.
[49] Miranda R R, Bezerra A G, Oliveira Ribeiro C A, Randi M A F, Voigt C L, Skytte L, Rasmussen K L, Kjeldsen F, Filipak Neto F. Toxicology in Vitro, 2017, 40:134.
[50] Kanazawa T, Akiyama F, Kakizaki S, Takashima Y, Seta Y. Biomaterials, 2014, 35:4247.
[51] Sharma H S, Sharma A. Nanomedicine (London, England), 2010, 5:533.
[52] 王云(Wang Y), 丰伟悦(Feng W Y), 赵宇亮(Zhao Y L), 柴之芳(Chai Z F). 中国科学B辑:化学(Science in China Series B:Chemistry), 2009, 106.
[53] Wen R X, Yang X X, Hu L G, Sun C, Zhou Q F, Jiang G B. Journal of Applied Toxicology, 2016, 36:445.
[54] Lee J H, Kim Y S, Song K S, Ryu H R, Sung J H, Park J D, Park H M, Song N W, Shin B S, Marshak D, Ahn K, Lee J E, Yu I J. Particle and Fibre Toxicology, 2013, 10.
[55] Skalska J, Frontczak-Baniewicz M, Struzynska L. Neurotoxicology, 2015, 46:145.
[56] 薛玉英(Xue Y Y), 唐萌(Tang M). 东南大学学报(自然科学版)(Journal of Southeast University(Natural Science)), 2009, 1315.
[57] Lee Y, Choi J, Kim P, Choi K, Kim S, Shon W, Park K. Toxicol. Res., 2012, 28:139.
[58] Donaldson K, Stone V, Tran C L, Kreyling W, Borm P J. Occup. Environ. Med., 2004, 61:727.
[59] 徐明(Xu M), 王哲(Wang Z), 刘思金(Liu S J). 中国材料进展(Rare Metals Letters), 2016, 28.
[60] 滕傲雪(Teng A X). 微量元素与健康研究(Studies of Trace Elements and Health), 2013, 65.
[61] Lee J H, Mun J, Park J D, Yu I J. Nanotoxicology, 2012, 6:667.
[62] Kao Y Y, Cheng T J, Yang D M, Wang C T, Chiung Y M, Liu P S. Journal of Molecular Neuroscience, 2012, 48:464.
[63] Mistry A, Stolnik S, Illum L. Int. J. Pharm., 2009, 379:146.
[64] Leite P E, Pereira M R, Granjeiro J M. Toxicol In Vitro, 2015, 29:1653.
[65] 秦伟伟(Qin W W), 修瑞娟(Xiu R J), 史晓瑞(Shi X R). 国际脑血管病杂志(International Journal of Cerebrovascular Diseases), 2010, 18:711.
[66] Nuriya M, Shinotsuka T, Yasui M. Cereb Cortex, 2013, 23:2118.
[67] Chen I C, Hsiao I L, Lin H C, Wu C H, Chuang C Y, Huang Y J. Environ. Toxicol. Pharmacol., 2016, 47:108.
[68] 汤京龙(Tang J L), 王硕(Wang S), 刘丽(Liu L), 王春仁(Wang C R), 奚廷斐(Xi Y F). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2013, 1025.
[69] Trickler W J, Lantz S M, Murdock R C, Schrand A M, Robinson B L, Newport G D, Schlager J J, Oldenburg S J, Paule M G, Slikker W, Hussain S M, Ali S F. Toxicol. Sci., 2010, 118:160.
[70] Xu L M, Shao A L, Zhao Y H, Wang Z J, Zhang C P, Sun Y L, Deng J, Chou L L. Journal of Nanoscience and Nanotechnology, 2015, 15:4215.
[71] Sharma H S, Hussain S, Schlager J, Ali S F, Sharma A. Acta Neurochir. Suppl., 2010, 106:359.
[72] Long Y M, Zhao X C, Clermont A C, Zhou Q F, Liu Q, Feener E P, Yan B, Jiang G B. Nanotoxicology, 2016, 10:501.
[73] Landgraf L, Muller I, Ernst P, Schafer M, Rosman C, Schick I, Kohler O, Oehring H, Breus V V, Basche T, Sonnichsen C, Tremel W, Hilger I. Beilstein J. Nanotechnol., 2015, 6:300.
[74] 管磊剑(Guan J L), 徐凯旋(Xu K X), 李宁宁(Li N N), 王心如(Wang X R), 吴笛(Wu D). 中国公共卫生(Chinese Journal of Public Health), 2017, 1018.
[75] Stamenkovic V, Milenkovic I, Galjak N, Todorovic V, Andjus P. Behavioural Brain Research, 2017, 331:241.
[76] Schoenfeld R, Schiffelholz T, Beyer C, Leplow B, Foreman N. Neurobiology of Learning and Memory, 2017, 139:117.
[77] Bodden C, Siestrup S, Palme R, Kaiser S, Sachser N, Richter S H. Behavioural Brain Research, 2018, 336:261.
[78] Zhang Y B, Ferguson S A, Watanabe F, Jones Y, Xu Y, Biris A S, Hussain S, Ali S F. Small, 2013, 9:1715.
[79] Yin N Y, Zhang Y, Yun Z J, Liu Q, Qu G B, Zhou Q F, Hu L G, Jiang G B. Toxicol. Lett., 2015, 237:112.
[80] Davenport L L, Hsieh H, Eppert B L, Carreira V S, Krishan M, Ingle T, Howard P C, Williams M T, Vorhees C V, Genter M B. Neurotoxicol. Teratol., 2015, 51:68.
[81] Liu P D, Huang Z H, Gu N. Ecotoxicology and Environmental Safety, 2013, 87:124.
[82] Ghaderi S, Tabatabaei S R F, Varzi H N, Rashno M. Journal of Toxicological Sciences, 2015, 40:263.
[83] Wu J J, Yu C H, Tan Y, Hou Z, Li M, Shao F, Lu X X. Environmental Research, 2015, 138:67.
[84] Powers C M, Slotkin T A, Seidler F J, Badireddy A R, Padilla S. Neurotoxicol. Teratol., 2011, 33:708.
[85] Tang J L, Xiong L, Wang S, Wang J Y, Liu L, Li J G, Wan Z Y, Xi T F. Applied Surface Science, 2008, 255:502.
[86] Dabrowska-Bouta B, Zieba M, Orzelska-Gorka J, Skalska J, Sulkowski G, Frontczak-Baniewicz M, Talarek S, Listos J, Struzynska L. Toxicology, 2016, 363/364:29.
[87] Yin N Y, Zhang Y, Yun Z J, Liu Q, Qu G B, Zhou Q F, Hu L G, Jiang G B. Toxicology Letters, 2015, 237:112.
[88] Ahmed M M, Hussein M M A. Biomedicine & Pharmacotherapy, 2017, 90:731.
[89] Yin N Y, Liu Q, Liu J Y, He B, Cui L, Li Z N, Yun Z J, Qu G B, Liu S J, Zhou Q F, Jiang G B. Small, 2013, 9:1831.
[90] 李永生(Li Y S), 阎学安(Yan X A), 邵福源(Shao F Y). 实用医药杂志(Practical Journal of Medicine & Pharmacy), 2006, 864.
[91] Begum A N, Aguilar J S, Elias L, Hong Y. Neurotoxicology, 2016, 57:45.
[92] Hadrup N, Loeschner K, Mortensen A, Sharma A K, Qvortrup K, Larsen E H, Lam H R. Neurotoxicology, 2012, 33:416.
[93] Hussain S M, Javorina A K, Schrand A M, Duhart H M, Ali S F, Schlager J J. Toxicol. Sci., 2006, 92:456.
[94] Mytych J, Zebrowski J, Lewinska A, Wnuk M. Molecular Neurobiology, 2017, 54:1285.
[95] Haase A, Rott S, Mantion A, Graf P, Plendl J, Thunemann A F, Meier W P, Taubert A, Luch A, Reiser G. Toxicol. Sci., 2012, 126:457.
[96] Hsiao I L, Hsieh Y K, Chuang C Y, Wang C F, Huang Y J. Environmental Toxicology, 2017, 32:1742.
[97] Skalska J, Dabrowska-Bouta B, Struzyńska L. Food and Chemical Toxicology, 2016, 97:307.
[98] Bacchetta C, Ale A, Simoniello M F, Gervasio S, Davico C, Rossi A S, Desimone M F, Poletta G, López G, Monserrat J M. Ecological Indicators, 2017, 76:230.
[99] Shi J P, Sun X, Lin Y, Zou X Y, Li Z J, Liao Y Y, Du M M, Zhang H W. Biomaterials, 2014, 35:6657.
[100] Kim S H, Ko J W, Koh S K, Lee I C, Son J M, Moon C, Kim S H, Shin D H, Kim J C. Molecular & Cellular Toxicology, 2014, 10:173.
[101] 亓珅(Qi K), 杜怡峰(Du Y F). 中国神经免疫学和神经病学杂志(Chinese Journal of Neuroimmunology and Neurology), 2013, 278.
[102] 徐说(Xu S), 林文娟(Lin W J). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2014, 1099.
[103] Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. in:Littman D R, Yokoyama W M, editors. Annual Review of Immunology, 2017, 35:441.
[104] Rubio-Perez J M, Morillas-Ruiz J M. Scientific World Journal, 2012, 2012:756357.
[105] Huang C L, Hsiao I L, Lin H C, Wang C F, Huang Y J, Chuang C Y. Environmental Research, 2015, 136:253.
[106] Danila O O, Berghian A S, Dionisie V, Gheban D, Olteanu D, Tabaran F, Baldea I, Katona G, Moldovan B, Clichici S, David L, Filip G A. Nanomedicine, 2017, 12:1455.
[107] Lin H C, Huang C L, Huang Y J, Hsiao I L, Yang C W, Chuang C Y. Toxicology in Vitro, 2016, 34:289.
[108] Pereira-Lopes S, Celhar T, Sans-Fons G, Serra M, Fairhurst A M, Lloberas J, Celada A. The Journal of Immunology, 2013, 191:6128.
[109] Sun C, Yin N Y, Wen R X, Liu W, Jia Y X, Hu L G, Zhou Q F, Jiang G B. Neurotoxicology, 2016, 52:210.
[110] Lin H C, Ho M Y, Tsen C M, Huang C C, Wu C C, Huang Y J, Hsiao I L, Chuang C Y. Toxicological Sciences, 2017, 158:151.
[111] Hanada S, Fujioka K, Inoue Y, Kanaya F, Manome Y, Yamamoto K. Int. J. Mol. Sci., 2014, 15:1812.
[112] Chen L Q, Fang L, Ling J, Ding C Z, Kang B, Huang C Z. Chemical Research in Toxicology, 2015, 28:501.
[113] Braydich-Stolle L K, Lucas B, Schrand A, Murdock R C, Lee T, Schlager J J, Hussain S M, Hofmann M C. Toxicological Sciences, 2010, 116:577.
[114] Riaz Ahmed K B, Nagy A M, Brown R P, Zhang Q, Malghan S G, Goering P L. Toxicology in Vitro, 2017, 38:179.
[115] Liu J Y, Hurt R H. Environmental Science & Technology, 2010, 44:2169.
[116] Gliga A R, Skoglund S, Odnevall W I, Fadeel B, Karlsson H L. Particle and Fibre Toxicology, 2014, 11:11.
[117] Suresh A K, Pelletier D A, Wang W, Morrell-Falvey J L, Gu B, Doktycz M J. Langmuir, 2012, 28:2727.
[118] Ahamed M, Karns M, Goodson M, Rowe J, Hussain S M, Schlager J J, Hong Y. Toxicology and Applied Pharmacology, 2008, 233:404.
[119] Zhang T L, Wang L M, Chen Q, Chen C Y. Yonsei. Med. J., 2014, 55:283.
[120] Orlowski P, Krzyzowska M, Zdanowski R, Winnicka A, Nowakowska J, Stankiewicz W, Tomaszewska E, Celichowski G, Grobelny J. Toxicology in Vitro, 2013, 27:1798.
[121] Milic M, Leitinger G, Pavicic I, Zebic Avdicevic M, Dobrovic S, Goessler W, Vinkovic Vrcek I. J. Appl. Toxicol., 2015, 35:581.
[122] Tejamaya M, Römer I, Merrifield R C, Lead J R. Environmental Science & Technology, 2012, 46:7011.
[123] Naha P C, Casey A, Tenuta T, Lynch I, Dawson K A, Byrne H J, Davoren M. Aquatic Toxicology, 2009, 92:146.
[124] Van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston B D, de-Bastos E, Booth T, Tyler C R, Santos E M. Environ. Sci. Technol., 2013, 47:8005.
[125] Zhou Q F, Sun C, Liu W, Jiang G B. Chinese Science Bulletin (Chinese Version), 2015, 60:645.
[126] Wang Z, Liu S J, Ma J, Qu G B, Wang X Y, Yu S J, He J Y, Liu J F, Xia T, Jiang G B. ACS Nano, 2013, 7:4171.
[127] Sussman E M, Casey B J, Dutta D, Dair B J. J. Appl. Toxicol., 2015, 35:631.
[128] Hsiao I L, Hsieh Y K, Wang C F, Chen I C, Huang Y J. Environmental Science & Technology, 2015, 49:3813.
[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[3] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[4] 张雨竹, 詹菁, 刘倩, 周群芳, 江桂斌. 大气细颗粒物引发的神经毒性和分子机理[J]. 化学进展, 2021, 33(5): 713-725.
[5] 骆敏倩, 衡伟利, 代娟, 魏元锋, 高缘, 张建军. 药物无定形的转晶及其抑制策略[J]. 化学进展, 2021, 33(11): 2116-2127.
[6] 王红娟, 时蜜, 田璐, 赵亮, 张美芹. 指纹遗留时间的研究方法[J]. 化学进展, 2019, 31(5): 654-666.
[7] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[8] 杨昆仑, 周家盛, 吕丹, 孙悦, 楼子墨, 徐新华*. 铁基复合材料的制备及其对水中锑的去除[J]. 化学进展, 2017, 29(11): 1407-1421.
[9] 李力成, 方东, 李广忠, 刘瑞娜, 刘素琴, 徐卫林. 阳极氧化法制备阀金属氧化物纳米管的机理及影响因素[J]. 化学进展, 2016, 28(4): 589-606.
[10] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[11] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[12] 钟震, 路航, 任天斌. 纳米银形状控制合成与聚合物纳米银复合材料[J]. 化学进展, 2014, 26(12): 1930-1941.
[13] 饶路, 姜艳霞, 张斌伟, 游乐星, 李崭虹, 孙世刚. 乙醇电催化氧化[J]. 化学进展, 2014, 26(05): 727-736.
[14] 李志果, 张玲玲. 金表面巯基化DNA单层性能的影响因素研究[J]. 化学进展, 2014, 26(05): 846-855.
[15] 李阳, 牛军峰, 张驰, 王正早, 郑梦源, 商恩香. 水中金属纳米颗粒对细菌的光致毒性机理[J]. 化学进展, 2014, 26(0203): 436-449.
阅读次数
全文


摘要

纳米银的神经毒理学效应