English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1086-1099 DOI: 10.7536/PC200430 前一篇   后一篇

• 综述 •

凝聚态化学视角下的生物矿化

茅瓅波1†, 高怀岭1†, 孟玉峰2, 杨玉露1, 孟祥森1, 俞书宏1,2,**()   

  1. 1.中国科学技术大学合肥微尺度物质科学国家研究中心 合肥 230026
    2.中国科学技术大学化学与材料科学学院 仿生材料与化学研究所 合肥 230026
  • 收稿日期:2020-03-07 修回日期:2020-03-20 出版日期:2020-08-24 发布日期:2020-04-23
  • 通讯作者: 俞书宏
  • 作者简介:
    † These authors contributed equally to this work.
  • 基金资助:
    国家自然科学基金项目(51732011); 国家自然科学基金项目(21431006); 国家自然科学基金项目(21761132008); 国家自然科学基金项目(21701161); 安徽省自然科学基金项目(1808085ME114)

Biomineralization: A Condensed Matter Chemistry

Libo Mao1†, Huailing Gao1†, Yufeng Meng2, Yulu Yang1, Xiangsen Meng1, Shuhong Yu1,2,**()   

  1. 1. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
    2. School of Chemistry and Materials Science, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received:2020-03-07 Revised:2020-03-20 Online:2020-08-24 Published:2020-04-23
  • Contact: Shuhong Yu
  • About author:
    ** e-mail:
  • Supported by:
    the National Natural Science Foundation of China(51732011); the National Natural Science Foundation of China(21431006); the National Natural Science Foundation of China(21761132008); the National Natural Science Foundation of China(21701161); Natural Science Foundation of Anhui Province(1808085ME114)

凝聚态化学是研究凝聚态材料的合成、组分、结构、性能、相互作用及相关化学反应等多个领域的一门学科。近年来对生物矿物这种特殊的天然凝聚态材料不断深入的探索,极大扩展了凝聚态化学原有的研究视野。这些生物矿物常通过非经典的方式,在温和而复杂的体内甚至体外环境中形成;它们具有长期进化筛选出的跨尺度多级组织结构,充分利用了材料微观形态和不同凝聚态材料间的表、界面相互作用,因此具有非常优异的性能。本文通过分析生物矿物形成和转化过程中涉及的几种特殊机制,阐明真实环境条件下凝聚态材料合成和凝聚态化学反应的一些新特征。同时,还将介绍由生物矿物相关研究推动的凝聚态化学的实际应用。最后,对该领域未来需要解决的问题和重要发展方向做出展望。

Condensed matter chemistry deals with the synthesis, the composition, the structure, the property, the interaction and the chemical reaction of condensed matter. The research of an unusual type of natural condensed matter, biomineral, has greatly extended the scope of condensed matter chemistry. These biominerals are always grown via non-classical pathways under ambient but complex conditions. The well-designed hierarchical structures, which have evolved for millions of years, endow them with superior performance by taking advantage of the interfacial interactions between different condensed matters that comprise these biominerals. In this review, we elaborate some extraordinary mechanisms involved in the formation and transformation of biominerals, and analyze the new features of the syntheses and chemical reactions of condensed matters. We also introduce the applications of condensed matter chemistry supported by the research of biominerals. We conclude by proposing problems to be solve in the future and prospects of condensed matter chemistry research of biominerals.

Contents

===1 Introduction

===2 Formation of biomineral condensed matters

===2.1 Classical theory

===2.2 Oriented attachment growth

===2.3 Liquid precursor mechanism

===2.4 Mesocrystal

===3 Transformation of biomineral condensed matters

===3.1 Calcium carbonate

===3.2 Calcium phosphate

===3.3 Silica

===3.4 Iron oxide

===4 Applications of biomineral-inspired condensed matters

===4.1 Structural biominerals

===4.2 Functional biominerals

===4.3 Biomineral-inspired structural materials

===4.4 Biomineral-inspired biomedical materials

===4.5 Biomineral-inspired functional materials

===5 Conclusion and perspective

()
图1 生物矿物凝聚态材料的形成机理包括经典结晶理论和非经典结晶理论[6,7,8]
Fig.1 Formation of biomineral condensed matters, including classical theory and non-classical crystallization[6,7,8]
图2 生物矿物凝聚态转化过程
Fig.2 Transformation process of biomineral condensed matters
图3 天然生物矿物凝聚态材料 (a)生物矿物力学材料:(逆时针方向)人体骨骼横切面的显微图像[82],贝壳[69],石鳖与石鳖牙齿[65],螳螂虾的锤节[91]、尾甲[96]、鞍部[94];(b)生物矿物功能材料:(逆时针方向)趋磁细菌内部的磁小体[102],海蛇尾[100],深海龙鱼透明牙齿[101],石鳖的背部眼睛[99];(c)其他生物矿物材料:植物中存储的钙盐[103]
Fig.3 Natural biomineral condensed matters. (a) Biominerals with mechanical properties:(counterclockwise) microscopic image of the transverse section of human bone[82], copyright 2018, AAAS; nacre[69], copyright 2019, John Wiley and Sons; chiton teeth and chiton[65], copyright 2013, John Wiley and Sons; mantis shrimp dactyl club[91], copyright 2018, John Wiley and Sons; mantis shrimp telson[96],copyright 2019, John Wiley and Sons; mantis shrimp dactyl club saddle[94], copyright 2015, John Wiley and Sons.(b) Biominerals with functional properties:(counterclockwise): magnetosomes in the magnetotactic bacteria[102], copyright 2016, Springer Nature; brittle stars[100], copyright 2001, Springer Nature; transparent teeth of the deep-sea dragonfish[101], copyright 2019, Cell Press; aragonite-based lenses in chiton eye[99], copyright 2015, AAAS.(c) Biominerals with other properties: photomicrograph of calcium oxalate crystals in plants[103], copyright 2011, Elsevier B.V
图4 (a)模拟生物矿化过程合成人工珍珠母的过程示意图[109]。(b)通过仿生策略利用磷酸钙离子团簇实现晶体的外延生长及生长前后高分辨透射电镜照片[118]。(c)利用连续层层组装技术人工制备仿牙釉质结构材料的示意图和扫描电镜照片[108]。(d)仿生全合成仿贝壳棱柱层流程图及其与天然棱柱层扫描电镜照片对比[110]
Fig.4 (a) Fabrication of synthetic nacre[109], copyright 2016, AAAS.(b) Scheme of a biomimetic mineralization process for epitaxial crystal growth and the HRTEM images before and after the growth [118], copyright 2019, AAAS.(c) Preparation and structure of biomimetic columnar composites[108], copyright 2017, Springer Nature.(d) Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films, and SEM images of synthetic and natural prisms[110], copyright 2017, Springer Nature
[1]
Xu R . Nat. Sci. Rev., 2018,5:1.
[2]
Xu R , Wang K , Chen G , Yan W . Nat. Sci. Rev., 2019,6:191.
[3]
Eder M , Amini S , Fratzl P . Science, 2018,362:543.
[4]
Sanderson K . Nature, 2015,519:S14.
[5]
Thanh N T , Maclean N , Mahiddine S . Chem. Rev., 2014,114:7610.
[6]
Gower L B . Chem. Rev., 2008,108:4551.
[7]
Meldrum F C , Colfen H . Chem. Rev., 2008,108:4332.
[8]
Sommerdijk N A , de With G . Chem. Rev., 2008,108:4499.
[9]
Davis K J , Dove P M , De Yoreo J . J. Science, 2000,290:1134.
[10]
Han Y J , Aizenberg J . Am. Chem. Soc., 2003,125:4032.
[11]
Gong X , Wang Y W , Ihli J , Kim Y Y , Li S , Walshaw R , Chen L , Meldrum F C . Adv. Mater., 2015,27:7395.
[12]
Liu Z , Meyers M A , Zhang Z , Ritchie R O . Prog. Mater. Sci., 2017,88:467.
[13]
Orme C A , Noy A , Wierzbicki A , McBride M T , Grantham M , Teng H H , Dove P M , DeYoreo J . J. Nature, 2001,411:775.
[14]
Aizenberg J , Muller D A , Grazul J L , Hamann D R . Science, 2003,299:1205.
[15]
Han Y J , Aizenberg J . Angew. Chem. Int. Ed., 2003,42:3668.
[16]
Zeng M , Kim Y Y , Anduix Canto C , Frontera C , Laundy D , Kapur N , Christenson H K , Meldrum F C . Proc. Natl. Acad. Sci. U. S. A., 2018,115:7670.
[17]
De Yoreo J J , Gilbert P U , Sommerdijk N A , Penn R L , Whitelam S , Joester D , Zhang H , Rimer J D , Navrotsky A , Banfield J F , Wallace A F , Michel F M , Meldrum F C , Colfen H , Dove P M. Science , 2015, 349: aaa6760.
[18]
Gilbert P , Porter S M , Sun C Y , Xiao S , Gibson B M , Shenkar N , Knoll A H . Proc. Natl. Acad. Sci. U. S. A., 2019,116:17659.
[19]
Li D , Nielsen M H , Lee J R , Frandsen C , Banfield J F , De Yoreo J . J. Science, 2012,336:1014.
[20]
Nielsen M H , Aloni S , De Yoreo J . Science, 2014,345:1158.
[21]
Kim Y-Y , Douglas E P , Gower L B . Langmuir, 2007,23:4862
[22]
Smeets P J M , Finney A R , Habraken W J E M , Nudelman F , Friedrich H , Laven J , De Yoreo J J , Rodger P M , Sommerdijk N A J M . Proc. Natl. Acad. Sci. U. S. A., 2017,114:E7882.
[23]
Bahn S Y , Jo B H , Choi Y S , Cha H J . Sci. Adv., 2017,3:e1700765.
[24]
Xu Y F , Tijssen K C H , Bomans P H H , Akiva A , Friedrich H , Kentgens A P M , Sommerdijk N . Nat. Commun., 2018,9:2582.
[25]
Wolf S E , Leiterer J , Pipich V , Barrea R , Emmerling F , Tremel W . Am. Chem. Soc., 2011,133:12642.
[26]
Bergström L , Sturm E V , Salazar Alvarez G , Cölfen H . Acc. Chem. Res., 2015,48:1391.
[27]
Chen S F , Yu S H , Jiang J , Li F , Liu Y . Chem. Mater., 2006,18:115.
[28]
Picker A , Nicoleau L , Burghard Z , Bill J , Zlotnikov I , Labbez C , Nonat A , Colfen H . Sci. Adv., 2017,3:e1701216.
[29]
Yu P T , Tsao C , Wang C C , Chang C Y , Wang C H , Chan J C C . Angew. Chem. Int. Ed., 2017,129:16420.
[30]
Fei X , Li W , Shao Z , Seeger S , Zhao D , Chen X . Am. Chem. Soc., 2014,136:15781.
[31]
Bewernitz M A , Gebauer D , Long J , Cölfen H , Gower L B . Faraday Discuss., 2012,159:291.
[32]
Yang X , Wang M , Yang Y , Cui B , Xu Z , Yang X . Phys. Chem. Chem. Phys., 2019,21:14530.
[33]
Blue C R , Giuffre A , Mergelsberg S , Han N , De Yoreo J J , Dove P M . Geochim. Cosmochim. Ac., 2017,196:179.
[34]
Zou Z , Habraken W , Matveeva G , Jensen A C S , Bertinetti L , Hood M A , Sun C Y , Gilbert P , Polishchuk I , Pokroy B , Mahamid J , Politi Y , Weiner S , Werner P , Bette S , Dinnebier R , Kolb U , Zolotoyabko E , Fratzl P . Science, 2019,363:396.
[35]
Bushuev Y G , Finney A R , Rodger P M . Cryst. Growth Des., 2015,15:5269.
[36]
Alberic M , Bertinetti L , Zou Z , Fratzl P , Habraken W , Politi Y . Adv. Sci., 2018,5:1701000.
[37]
Konrad F , Purgstaller B , Gallien F , Mavromatis V , Gane P , Dietzel M . J. Cryst. Growth, 2018,498:381.
[38]
Jung G Y , Shin E , Park J H , Choi B-Y , Lee S-W , Kwak S K . Chem. Mater., 2019,31:7547.
[39]
Zou Z Y , Bertinetti L , Politi Y , Fratzl P , Habraken W . Small, 2017,13:1603100.
[40]
Zou Z Y , Bertinetti L , Habraken W J E M , Fratzl P . CrystEngComm, 2018,20:2902.
[41]
Rodriguez Blanco J D , Shaw S , Benning L G . Nanoscale, 2011,3:265.
[42]
Maruyama K , Kagi H , Komatsu K , Yoshino T , Nakano S . Raman Spectrosc., 2017,48:1449.
[43]
Belcher A M , Wu X H , Christensen R J , Hansma P K , Stucky G D , Morse D E . Nature, 1996,381:56.
[44]
Jiang S , Jin W , Wang Y N , Pan H , Sun Z , Tang R . RSC Adv., 2017,7:25497.
[45]
Jin W , Jiang S , Pan H , Tang R . Crystals, 2018,8:48.
[46]
Uskokovic V . Cryst. Growth Des., 2019,19:4340.
[47]
Zhang J , Wang L , Zhang W , Putnis C V . Langmuir, 2020,36(8):2102.
[48]
Windarti T , Taslimah , Haris A , Astuti Y , Darmawan A . IOP Conf. Ser.: Mater. Sci. Eng., 2017,172:012058.
[49]
Kajiyama S , Sakamoto T , Inoue M , Nishimura T , Yokoi T , Ohtsuki C , Kato T . CrystEngComm, 2016,18:8388.
[50]
Stammeier J A , Purgstaller B , Hippler D , Mavromatis V , Dietzel M . MethodsX, 2018,5:1241.
[51]
Liu B , Cao Y , Huang Z , Duan Y , Che S . Adv. Mater., 2015,27:479.
[52]
Nabil M , Mahmoud K R , El Shaer A , Nayber H A . J. Phys. Chem. Solids, 2018,121:22.
[53]
Lei Y , He Y , Chen F , Xu J . Interceram-Int. Ceram. Rev., 2015,64:214.
[54]
Fuchs I , Aluma Y , Ilan M , Mastai Y . J. Phys. Chem. B, 2014,118:2104.
[55]
Buckley P , Hargreaves N , Cooper S . Commun. Chem., 2018,1:49.
[56]
Nishiyama N , Wakai F , Ohfuji H , Tamenori Y , Murata H , Taniguchi T , Matsushita M , Takahashi M , Kulik E , Yoshida K , Wada K , Bednarcik J , Irifune T . Sci. Rep., 2014,4:6558.
[57]
Misawa M , Ryuo E , Yoshida K , Kalia R K , Nakano A , Nishiyama N , Shimojo F , Vashishta P , Wakai F . Sci. Adv., 2017,3:e1602339.
[58]
Bykova E , Bykov M , Cernok A , Tidholm J , Simak S I , Hellman O , Belov M P , Abrikosov I A , Liermann H P , Hanfland M , Prakapenka V B , Prescher C , Dubrovinskaia N , Dubrovinsky L . Nat. Commun., 2018,9:4789.
[59]
Nemoto M , Ren D , Herrera S , Pan S , Tamura T , Inagaki K , Kisailus D . Sci. Rep., 2019,9:856.
[60]
Faivre D . Iron Oxides: From Nature to Applications. Weinheim: John Wiley & Sons, 2016.
[61]
Bykova E , Dubrovinsky L , Dubrovinskaia N , Bykov M , McCammon C , Ovsyannikov S V , Liermann H P , Kupenko I , Chumakov A I , Ruffer R , Hanfland M , Prakapenka V . Nat. Commun., 2016,7:10661.
[62]
Ovsyannikov S V , Bykov M , Bykova E , Glazyrin K , Manna R S , Tsirlin A A , Cerantola V , Kupenko I , Kurnosov A V , Kantor I , Pakhomova A S , Chuvashova I , Chumakov A I , Ruffer R , McCammon C , Dubrovinsky L S . Nat. Commun., 2018,9:4142.
[63]
Anupama A V , Keune W , Sahoo B . Magn. Magn. Mater., 2017,439:156. https://linkinghub.elsevier.com/retrieve/pii/S030488531631767X

doi: 10.1016/j.jmmm.2017.04.094     URL    
[64]
Gordon L M , Roman J K , Everly R M , Cohen M J , Wilker J J , Joester D . Angew. Chem. Int. Ed., 2014,53:11506.
[65]
Wang Q , Nemoto M , Li D , Weaver J C , Weden B , Stegemeier J , Bozhilov K N , Wood L R , Milliron G W , Kim C S . Adv. Funct. Mater., 2013,23:2908.
[66]
Jiang Z , Liu Q , Roberts A P , Barrón V , Torrent J , Zhang Q . Geology, 2018,30395.
[67]
Chen C , Sparks D L . ACS Earth Space Chem., 2018,2:1095.
[68]
Zhou Z , Latta D E , Noor N , Thompson A , Borch T , Scherer M M . Environ. Sci. Technol., 2018,52:11142.
[69]
Huang W , Restrepo D , Jung J Y , Su F Y , Liu Z , Ritchie R O , McKittrick J , Zavattieri P , Kisailus D . Adv. Mater., 2019,31:e1901561.
[70]
Espinosa H D , Rim J E , Barthelat F , Buehler M J . Prog. Mater. Sci., 2009,54:1059.
[71]
Wegst U G , Bai H , Saiz E , Tomsia A P , Ritchie R O . Nat. Mater., 2015,14:23.
[72]
Barthelat F . Science, 2016,354:32.
[73]
Boyde A . The Development of Enamel Structure. SAGE Publications, 1967.
[74]
Chai H , Lee J J W , Constantino P J , Lucas P W , Lawn B R . Proc. Natl. Acad. Sci. U. S. A., 2009,106:7289.
[75]
Lawn B R , Lee J J W , Chai H . Annu. Rev. Mater. Res., 2010,40:55.
[76]
Lewin R . Science, 1985,228:707.
[77]
Beniash E , Stifler C A , Sun C Y , Jung G S , Qin Z , Buehler M J , Gilbert P U . Nat. Commun., 2019,10:4383.
[78]
Fincham A , Moradian Oldak J , Simmer J . Struct. Biol., 1999,126:270.
[79]
Barber A H , Lu D , Pugno N M . J. R. Soc. Interf., 2015,12:20141326.
[80]
Tao J , Battle K C , Pan H , Salter E A , Chien Y C , Wierzbicki A , De Yoreo J J . Proc. Natl. Acad. Sci. U. S. A., 2015,112:326.
[81]
Nudelman F , Pieterse K , George A , Bomans P H , Friedrich H , Brylka L J , Hilbers P A , de With G , Sommerdijk N A . Nat. Mater., 2010,9:1004.
[82]
Reznikov N , Bilton M , Lari L , Stevens M M , Kröger R . Science., 2018, 360: eaao2189.
[83]
Meyers M A , Lin A Y M , Chen P Y , Muyco J. . J. Mech. Behav. Biomed., 2008,1:76.
[84]
Lin Y S , Wei C T , Olevsky E A , Meyers M A . Mech. Behav. Biomed., 2011,4:1145.
[85]
Falini G , Albeck S , Weiner S , Addadi L . Science, 1996,271:67.
[86]
Suzuki M , Saruwatari K , Kogure T , Yamamoto Y , Nishimura T , Kato T , Nagasawa H . Science, 2009,325:1388.
[87]
Luz G M , Mano J F . Philos. T. R. Soc. A, 2009,367:1587.
[88]
Gao H , Ji B , Jager I L , Arzt E , Fratzl P . Proc. Natl. Acad. Sci. U. S. A., 2003,100:5597.
[89]
Zlotnikov I , Schoeppler V . Adv. Funct. Mater., 2017,27:1700506.
[90]
Schoeppler V , Granasy L , Reich E , Poulsen N , de Kloe R , Cook P , Rack A , Pusztai T , Zlotnikov I . Adv. Mater., 2018,30:e1803855.
[91]
Grunenfelder L K , Milliron G , Herrera S , Gallana I , Yaraghi N , Hughes N , Evans Lutterodt K , Zavattieri P , Kisailus D . Adv. Mater., 2018,30:1705295.
[92]
Weaver J C , Milliron G W , Miserez A , Evans Lutterodt K , Herrera S , Gallana I , Mershon W J , Swanson B , Zavattieri P , DiMasi E . Science, 2012,336:1275.
[93]
Yaraghi N A , Grunenfelder L , Suksangpanya N , Guarin N , Herrera S , Milliron G , Zavattieri P , Sheppard L , Wuhrer R , Kisailus D . Microsc. Microanal., 2015,21:2007.
[94]
Tadayon M , Amini S , Masic A , Miserez A . Adv. Funct. Mater., 2015,25:6437.
[95]
Tadayon M , Amini S , Wang Z , Miserez A . iScience, 2018,8:271.
[96]
Yaraghi N A , Trikanad A A , Restrepo D , Huang W , Rivera J , Herrera S , Zhernenkov M , Parkinson D Y , Caldwell R L , Zavattieri P D . Adv. Funct. Mater., 2019,29:1902238.
[97]
Yang W , Quan H , Meyers M A , Ritchie R O . Matter, 2019,1:1557.
[98]
Yang W , Sherman V R , Gludovatz B , Mackey M , Zimmermann E A , Chang E H , Schaible E , Qin Z , Buehler M J , Ritchie R O . Acta Biomater., 2014,10:3599.
[99]
Li L , Connors M J , Kolle M , England G T , Speiser D I , Xiao X , Aizenberg J , Ortiz C . Science, 2015,350:952.
[100]
Aizenberg J , Tkachenko A , Weiner S , Addadi L , Hendler G . Nature, 2001,412:819.
[101]
Velasco Hogan A , Deheyn D D , Koch M , Nothdurft B , Arzt E , Meyers M A . Matter, 2019,1:235.
[102]
Uebe R , Schüler D . Nat. Rev. Microbiol., 2016,14:621.
[103]
Asadi H , Mohamed S , Lim C P , Nahavandi S . Behav. Brain Res., 2016,309:67.
[104]
Bauer P , Elbaum R , Weiss I M . Plant Sci., 2011,180:746.
[105]
Sun S , Mao L B , Lei Z , Yu S H , Cölfen H . Angew. Chem. Int. Ed., 2016,55:11765.
[106]
Natalio F , Corrales T P , Panthofer M , Schollmeyer D , Lieberwirth I , Muller W E G , Kappl M , Butt H J, Tremel W . Science, 2013,339:1298.
[107]
He W X , Rajasekharan A K , Tehrani-Bagha A R , Andersson M . Adv. Mater., 2015,27:2260.
[108]
Yeom B , Sain T , Lacevic N , Bukharina D , Cha S-H , Waas A M , Arruda E M , Kotov N A . Nature, 2017,543:95.
[109]
Mao L B , Gao H L , Yao H B , Liu L , Cölfen H , Liu G , Chen S M , Li S K , Yan Y X , Liu Y Y . Science, 2016,354:107.
[110]
Xiao C , Li M , Wang B , Liu M F , Shao C , Pan H , Lu Y , Xu B B , Li S , Zhan D , Jiang Y , Tang R K , Liu X Y , Cölfen H . Nat. Commun., 2017,8:1398.
[111]
Picker A , Nicoleau L , Nonat A , Labbez C , Cölfen H . Adv. Mater., 2014,26:1135.
[112]
Matsumura S , Kajiyama S , Nishimura T , Kato T . Small, 2015,11:5127.
[113]
Liu Y , Liu S , Luo D , Xue Z , Yang X , Gu L , Zhou Y , Wang T . Adv. Mater., 2016,28:8740.
[114]
Elsharkawy S , Al Jawad M , Pantano M F , Tejeda Montes E , Mehta K , Jamal H , Agarwal S , Shuturminska K , Rice A , Tarakina N V , Wilson R M , Bushby A J , Alonso M , Rodriguez-Cabello J C , Barbieri E , del Río Hernández A , Stevens M M , Pugno N M , Anderson P , Mata A , Barbieri E . Nat. Commun., 2018,9:2145.
[115]
Nonoyama T , Wada S , Kiyama R , Kitamura N , Mredha M T I , Zhang X , Kurokawa T , Nakajima T , Takagi Y , Yasuda K . Adv. Mater., 2016,28:6740.
[116]
Niu L N , Jee S E , Jiao K , Tonggu L , Li M , Wang L , Yang Y D , Bian J H , Breschi L , Jang S S . Nat. Mater., 2017,16:370.
[117]
Sun J L , Jiao K , Niu L N , Jiao Y , Song Q , Shen L J , Tay F R , Chen J H . Biomaterials, 2017,113:203.
[118]
Shao C , Jin B , Mu Z , Lu H , Zhao Y , Wu Z , Yan L , Zhang Z , Zhou Y , Pan H . Sci. Adv., 2019, 5: eaaw9569.
[119]
Wang Y , Hu X , Zhang L , Zhu C , Wang J , Li Y , Wang Y , Wang C , Zhang Y , Yuan Q . Nat. Commun., 2019,10:2829.
[120]
Zhao R , Wang B , Yang X , Xiao Y , Wang X , Shao C , Tang R . Angew. Chem. Int. Ed., 2016,55:5225.
[121]
Lee K , Wagermaier W , Masic A , Kommareddy K P , Bennet M , Manjubala I , Lee S W , Park S B , Cölfen H , Fratzl P . Nat. Commun., 2012,3:725.
[122]
Sun Z , Liao T , Li W , Qiao Y , Ostrikov K . Adv. Funct. Mater., 2019,29:1901460.
[123]
Xia K , Wu W , Zhu M , Shen X , Yin Z , Wang H , Li S , Zhang M , Wang H , Lu H , Pan A , Pan C , Zhang Y . Sci. Bull., 2019.
[124]
Kokubu T , Oaki Y , Uchiyama H , Hosono E , Zhou H , Imai H . Chem.-Asian J., 2010,5:792.
[125]
Galloway J M , Talbot J E , Critchley K , Miles J J , Bramble J P . Adv. Funct. Mater., 2015,25:4590.
[126]
Nakayama M , Kajiyama S , Kumamoto A , Nishimura T , Ikuhara Y , Yamato M , Kato T . Nat. Commun., 2018,9:568.
[127]
Brody H . Nature, 2015,519:S1.
[128]
Espinosa H D , Soler Crespo R . Nature, 2017,543:42.
[129]
Bouville F , Maire E , Meille S , Van de Moortèle B , Stevenson A J , Deville S . Nat. Mater., 2014,13:508.
[130]
He Z , Yang Y , Liu J W , Yu S H . Chem. Soc. Rev., 2017,46:2732.
[1] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[2] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[3] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[4] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂[J]. 化学进展, 2021, 33(12): 2378-2391.
[5] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[6] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[7] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[8] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[9] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[10] 荆西平. 从固体化学到凝聚态化学[J]. 化学进展, 2020, 32(8): 1049-1059.
[11] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[12] 周晨, 吴俊涛*. 仿生微纳米纤维黏附材料[J]. 化学进展, 2018, 30(12): 1863-1873.
[13] 谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*. 基于细胞仿生矿化合成纳米材料及其应用[J]. 化学进展, 2018, 30(10): 1511-1523.
[14] 杨皓程, 陈一夫, 叶辰, 万灵书, 徐志康. 有机-无机复合多孔膜制备与应用[J]. 化学进展, 2015, 27(8): 1014-1024.
[15] 王生杰, 蔡庆伟, 杜明轩, 曹美文, 徐海. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(2/3): 229-241.
阅读次数
全文


摘要

凝聚态化学视角下的生物矿化