English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1831-1862 DOI: 10.7536/PC210933 前一篇   后一篇

• 综述 •

荧光探针在半胱氨酸检测的应用

周宇航, 丁莎, 夏勇*(), 刘跃军   

  1. 湖南工业大学包装与材料工程学院 株洲 412007
  • 收稿日期:2021-09-29 修回日期:2021-11-27 出版日期:2022-08-20 发布日期:2022-04-01
  • 通讯作者: 夏勇
  • 基金资助:
    湖南省教育厅科研项目(20C0593)

Fluorescent Probes for Cysteine Detection

Yuhang Zhou, Sha Ding, Yong Xia(), Yuejun Liu   

  1. School of Packaging and Materials Engineering, Hunan University of Technology,Zhuzhou 412007, China
  • Received:2021-09-29 Revised:2021-11-27 Online:2022-08-20 Published:2022-04-01
  • Contact: Yong Xia
  • Supported by:
    Scientific Research Fund of Hunan Provincial Education Department(20C0593)

半胱氨酸(Cys)是三种生物硫醇之一,是20种天然氨基酸中唯一一种含还原性巯基的天然氨基酸,是组成细胞内多肽和蛋白质的基本氨基酸之一。其参与体内细胞的氧化还原调控,调节体内氧化还原平衡,维持机体正常代谢,在生理过程中发挥着至关重要的作用。然而体内的Cys浓度水平异常会引起一系列生理疾病,体内的Cys浓度作为几种疾病的生物标志物具有临床意义。因此有效地识别和检测半胱氨酸受到越来越多的研究者们的青睐。相较传统检测方法,荧光探针因其操作简单、灵敏度高、响应迅速和实时检测等优点,已被广泛用于检测生物硫醇。本文基于常见荧光团的结构性能特征,综述了近三年来检测Cys的荧光探针,重点概述了其传感机制,并对其生物应用进行了简要说明,展望了未来Cys探针的研究方向与应用前景。

Cysteine (Cys) is one of the three biological thiols. It is the only natural amino acid containing a reducing sulfhydryl group among the twenty natural amino acids. It is one of the basic amino acids that composes intracellular polypeptides and proteins. It participates in redox regulation of cells, regulates the redox balance in the body, and maintains the normal metabolism of the body, which plays a vital role in the physiological process. However, abnormal levels of Cys concentration in the body can cause a series of physiological diseases, and the concentration of Cys in the body has clinical significance as a biomarker of several diseases. Therefore, the effective identification and detection of cysteine is favored by more and more researchers. Compared with traditional detection methods, fluorescent probes have been widely used to detect biological thiols because of their simple operation, high sensitivity, rapid response and real-time detection. Based on the structural and performance characteristics of common fluorophores, this article reviews the fluorescent probes used to detect Cys in the past three years, focuses on their sensing mechanisms, briefly describes its biological applications, and prospects the future research directions and application prospects of Cys probes.

Contents

1 Introduction

2 Organic small molecule fluorescent probes for detecting Cys

2.1 Coumarin-based fluorescent probes for Cys detection

2.2 Rhodamine-based fluorescent probes for Cys detection

2.3 Benzothiazole-based fluorescent probes for Cys detection

2.4 Fluorescein-based fluorescent probes for Cys detection

2.5 Naphthalimide-based fluorescent probes for Cys detection

2.6 BODIPY-based fluorescent probes for Cys detection

2.7 Cyanine-based fluorescent probes for Cys detection Cys probes

2.8 NBD-based fluorescent probes for Cys detection Cys

2.9 Others fluorescent probes for Cys detection

3 Nano-fluorescent probes for Cys detection

3.1 Based on quantum dots for Cys detection

3.2 Based on gold nanomaterials for Cys detection

3.3 Based on Carbon dots for Cys detection

4 Based on fluorescent protein probes for Cys detection

5 Conclusion and outlook

()
图1 三种生物硫醇结构式
Fig. 1 The structures of three biothiols
图2 香豆素结构式
Fig. 2 The structure of coumarin
图3 探针1与Cys反应机理[30]
Fig. 3 Reaction mechanism of probe 1 for Cys[30]
图4 探针2与Cys反应机理[31]
Fig. 4 Reaction mechanism of probe 2 for Cys[31]
图5 探针3与Cys反应机理[32]
Fig. 5 Reaction mechanism of probe 3 for Cys[32]
图6 探针4与Cys反应机理[33]
Fig. 6 Reaction mechanism of probe 4 for Cys[33]
图7 探针5与Cys反应机理[34]
Fig. 7 Reaction mechanism of probe 5 for Cys[34]
图8 探针6与Cys反应机理[35]
Fig. 8 Reaction mechanism of probe 6 for Cys[35]
图9 探针7与Cys的反应机理[36]
Fig. 9 Reaction mechanism of probe 7 for Cys[36]
图10 探针8与Cys反应机理[37]
Fig. 10 Reaction mechanism of probe 8 for Cys[37]
图11 罗丹明结构式
Fig. 11 The structure of rhodamine
图12 探针9与Cys反应机理[52]
Fig. 12 Reaction mechanism of probe 9 for Cys[52]
图13 探针10与Cys反应机理[53]
Fig. 13 Reaction mechanism of probe 10 for Cys[53]
图14 探针11与Cys反应机理[54]
Fig. 14 Reaction mechanism of probe 11 for Cys[54]
图15 探针12与Cys反应机理[55]
Fig. 15 Reaction mechanism of probe 12 for Cys[55]
图16 探针13与Cys反应机理[56]
Fig. 16 Reaction mechanism of probe 13 for Cys[56]
图17 探针14与Cys反应机理[57]
Fig. 17 Reaction mechanism of probe 14 for Cys[57]
图18 苯并噻唑结构式
Fig. 18 The structure of benzothiazole
图19 探针15与Cys反应机理[62]
Fig. 19 Reaction mechanism of probe 15 for Cys[62]
图20 探针16与Cys反应机理[63]
Fig. 20 Reaction mechanism of probe 16 for Cys[63]
图21 探针17与Cys反应机理[64]
Fig. 21 Reaction mechanism of probe 17 for Cys[64]
图22 探针18与Cys反应机理[65]
Fig. 22 Reaction mechanism of probe 18 for Cys[65]
图23 探针19与Cys反应机理[66]
Fig. 23 Reaction mechanism of probe 19 for Cys[66]
图24 探针20与Cys反应机理[67]
Fig. 24 Reaction mechanism of probe 20 for Cys[67]
图25 探针21与Cys反应机理[68]
Fig. 25 Reaction mechanism of probe 21 for Cys[68]
图26 探针22与Cys反应机理[69]
Fig. 26 Reaction mechanism of probe 22 for Cys[69]
图27 探针23与Cys反应机理[70]
Fig. 27 Reaction mechanism of probe 23 for Cys[70]. Copyright 2019, Royal Society of Chemistry
图28 荧光素结构式
Fig. 28 The structure of fluorescein
图29 探针24与Cys反应机理[76]
Fig. 29 Reaction mechanism of probe 24 for Cys[76]
图30 探针25与Cys反应机理[77]
Fig. 30 Reaction mechanism of probe 25 for Cys[77]
图31 探针26与Cys反应机理[78]
Fig. 31 Reaction mechanism of probe 26 for Cys[78]
图32 探针27与Cys反应机理[79]
Fig. 32 Reaction mechanism of probe 27 for Cys[79]
图33 探针28与Cys反应机理[80]
Fig. 33 Reaction mechanism of probe 28 for Cys[80]
图34 探针29与Cys反应机理[81]
Fig. 34 Reaction mechanism of probe 29 for Cys[81]
图35 探针30与Cys反应机理[82]
Fig. 35 Reaction mechanism of probe 30 for Cys[82]
图36 萘酰亚胺结构式
Fig. 36 The structure of naphthalimide
图37 探针31与Cys反应机理[90]
Fig. 37 Reaction mechanism of probe 31 for Cys[90]
图38 探针32与Cys反应机理[91]
Fig. 38 Reaction mechanism of probe 32 for Cys[91]
图39 探针33与Cys反应机理[92]
Fig. 39 Reaction mechanism of probe 33 for Cys[92]
图40 探针34与Cys反应机理[93]
Fig. 40 Reaction mechanism of probe 34 for Cys[93]
图41 探针35与Cys反应机理[94]
Fig. 41 Reaction mechanism of probe 35 for Cys[94]
图42 探针36与Cys反应机理[95]
Fig. 42 Reaction mechanism of probe 36 for Cys[95]
图43 探针37与Cys反应机理[96]
Fig. 43 Reaction mechanism of probe 37 for Cys[96]
图44 氟硼吡咯结构式
Fig. 44 The structure of BODIPY
图45 探针38与Cys反应机理[107]
Fig. 45 Reaction mechanism of probe 38 for Cys[107]
图46 探针39与Cys反应机理[108]
Fig. 46 Reaction mechanism of probe 39 for Cys[108]
图47 探针40与Cys反应机理[109]
Fig. 47 Reaction mechanism of probe 40 for Cys[109]
图48 探针41与Cys反应机理[110]
Fig. 48 Reaction mechanism of probe 41 for Cys[110]
图49 探针42与Cys反应机理[111]
Fig. 49 Reaction mechanism of probe 42 for Cys[111]
图50 探针43与Cys反应机理[112]
Fig. 50 Reaction mechanism of probe 43 for Cys[112]
图51 探针44与Cys反应机理[113]
Fig. 51 Reaction mechanism of probe 44 for Cys[113]
图52 探针45与Cys反应机理[114]
Fig. 52 Reaction mechanism of probe 45 for Cys[114]
图53 探针46与Cys反应机理[115]
Fig. 53 Reaction mechanism of probe 46 for Cys[115]
图54 花菁结构式
Fig. 54 The structure of cyanine
图55 探针47与Cys反应机理[119]
Fig. 55 Reaction mechanism of probe 47 for Cys[119]
图56 探针48与Cys反应机理[120]
Fig. 56 Reaction mechanism of probe 48 for Cys[120]
图57 探针49与Cys反应机理[121]
Fig. 57 Reaction mechanism of probe 49 for Cys[121]
图58 探针50与Cys反应机理[122]
Fig. 58 Reaction mechanism of probe 50 for Cys[122]
图59 探针51与Cys反应机理[123]
Fig. 59 Reaction mechanism of probe 51 for Cys[123]
图60 探针52与Cys反应机理[124]
Fig. 60 Reaction mechanism of probe 52 for Cys[124]
图61 探针53与Cys反应机理[125]
Fig. 61 Reaction mechanism of probe 53 for Cys[125]
图62 探针54与Cys反应机理[126]
Fig. 62 Reaction mechanism of probe 54 for Cys[126]
图63 苯并呋咱和硝基苯并呋咱结构式
Fig. 63 The structure of BD and NBD
图64 探针55与Cys反应机理[133]
Fig. 64 Reaction mechanism of probe 55 for Cys[133]
图65 探针56与Cys反应机理[134]
Fig. 65 Reaction mechanism of probe 56 for Cys[134]
图66 探针57与Cys反应机理[135]
Fig. 66 Reaction mechanism of probe 57 for Cys[135]
图67 探针58与Cys反应机理[136]
Fig. 67 Reaction mechanism of probe 58 for Cys[136]
图68 探针59与Cys反应机理[137]
Fig. 68 Reaction mechanism of probe 59 for Cys[137]
图69 探针60与Cys反应机理[138]
Fig. 69 Reaction mechanism of probe 60 for Cys[138]
图70 探针61与Cys反应机理[139]
Fig. 70 Reaction mechanism of probe 61 for Cys[139]
图71 探针62与Cys反应机理[140]
Fig. 71 Reaction mechanism of probe 62 for Cys[140]
图72 探针63与Cys反应机理[141]
Fig. 72 Reaction mechanism of probe 63 for Cys[141]
图73 探针64与Cys反应机理[142]
Fig. 73 Reaction mechanism of probe 64 for Cys[142]
图74 探针65与Cys反应机理[143]
Fig. 74 Reaction mechanism of probe 65 for Cys[143]
图75 探针66与Cys反应机理[144]
Fig. 75 Reaction mechanism of probe 66 for Cys[144]
图76 探针67与Cys反应机理[145]
Fig. 76 Reaction mechanism of probe 67 for Cys[145]
图77 探针68与Cys反应机理[150]
Fig. 77 Reaction mechanism of probe 68 for Cys[150]
图78 探针69与Cys反应机理[151]
Fig. 78 Reaction mechanism of probe 69 for Cys[151]
图79 探针70与Cys反应机理[158]
Fig. 79 Reaction mechanism of probe 70 for Cys[158]. Copyright 2021, Royal Society Of Chemistry
图80 探针71与Cys反应机理[159]
Fig. 80 Reaction mechanism of probe 71 for Cys[159]
图81 探针73与Cys反应机理[160]
Fig. 81 Reaction mechanism of probe 73 for Cys[160]
图82 探针74 与Cys反应机理[161]
Fig. 82 Reaction mechanism of probe 74 for Cys[161]
图83 探针75与Cys反应机理[162]
Fig. 83 Reaction mechanism of probe 75 for Cys[162]
图84 探针76 与Cys反应机理[163]
Fig. 84 Reaction mechanism of probe 76 for Cys[162].Copyright 2020, Royal Society Of Chemistry
图85 探针77与Cys反应机理[164]
Fig. 85 Reaction mechanism of probe 77 for Cys[164]
图86 探针78 与Cys反应机理[166]
Fig. 86 Reaction mechanism of probe 78 for Cys[166]
图87 探针79与Cys反应机理[167]
Fig. 87 Reaction mechanism of probe 79 for Cys[167]
图88 探针80与Cys反应机理[168]
Fig. 88 Reaction mechanism of probe 80 for Cys[168]
图89 探针81 与Cys反应机理[169]
Fig. 89 Reaction mechanism of probe 81 for Cys[169]. Copyright 2020, Royal Society Of Chemistry
图90 探针82 与Cys反应机理[170]
Fig. 90 Reaction mechanism of probe 82 for Cys[170]. Copyright 2020, American Chemical Society
图91 探针83与Cys反应机理[171]
Fig. 91 Reaction mechanism of probe 83 for Cys[171]. Copyright 2021, Royal Society Of Chemistry
图92 探针84与Cys反应机理[172]
Fig. 92 Reaction mechanism of probe 84 for Cys[172]. Copyright 2020, Royal Society Of Chemistry
图93 探针85与Cys反应机理[173]
Fig. 93 Reaction mechanism of probe 85 for Cys[173]
图94 探针86与Cys反应机理[176]
Fig. 94 Reaction mechanism of probe 86 for Cys[176]
图95 探针87与Cys反应机理[177]
Fig. 95 Reaction mechanism of probe 87 for Cys[177]
表1 Cys荧光探针的总结
Table 1 Summary of Cys fluorescent probe
Probe Fluorophore λex/λex LOD Time Solvent Application ref
1 Coumarin 381/461 nm 6 nM 15 min DMSO/PBS(VV=1∶9) A357 cells 30
2 Coumarin 454/505 nm 0.24 μM 10 min HEPES/DMSO(VV=6∶4) BHK-21 cells 31
3 Coumarin 430/495 nm 49 nM 3 min PBS Liver tissues 32
4 Coumarin 326/466 nm 2 μM - EtOH/H2O (VV=9∶1) Living cells 33
5 Coumarin 322/511 nm 88.2 nM 18 min PBS Living cells 34
6 Coumarin 510/560 nm 0.28 μM 30 min EtOH/PBS (VV=1∶1) HeLa cells 35
7 Coumarin 360/470 nm - 60 min DMSO/PBS (V∶V=1∶199) HeLa cells 36
8 Coumarin 460/536 nm 0.3 μM - EtOH/PBS(VV=1∶1) - 37
9 Rhodamine 410/462 nm 0.12 μM 10 min EtOH/PBS (VV=1∶2) Caov 3 cells 52
10 Rhodamine 549/584 nm 20 μM 1.5 min DMSO/PBS(VV=1∶1) BSA/water 53
11 Rhodamine 440/467 nm 1.5 μM 20 min EtOH/PBS (VV=3∶7) HeLa cells 54
12 Rhodamine 395/590 nm 0.47 μM 30 min DMSO/PBS (VV=1∶9) Liver tissues 55
13 Rhodamine 365/579 nm 0.282 μM - - Human serum 54
14 Rhodamine 530/574 nm 0.01 μM - aqueous - 55
15 Benzothiazole 423/686 nm 0.20 μM 14 min HEPES/ methanol / acetonitrile (V∶V∶V=1∶1∶1∶1) HeLa cells 62
16 Benzothiazole 370/478 nm 0.478 μM 2 min DMSO/PBS (VV=1∶1) HeLa cells 63
17 Benzothiazole 365/710 nm 0.40 μM 120 min DMSO/PBS (VV=1∶1) HeLa cells 64
18 Benzothiazole 405/595 nm 74 nM 3 min DMSO/PBS (VV=1∶1) Mitochondria 65
19 Benzothiazole 430/740 nm 0.062 μM 15 min ACN/ H2O (VV=99∶1) A549 cells 66
20 Benzothiazole 411/713 nm 116 nM 15 min CH3CN/PBS (VV=1∶1) HeLa cells 67
21 Benzothiazole 365/607 nm 0.12 μM 80 min DMSO/Tris-HCl(VV=99∶1)(V∶V=1∶99) MCF-7 cells 68
22 Benzothiazole 340/455 nm 37 nM 30 min DMSO/PBS (VV=1∶9) HeLa cells 69
23 benzothiazole - 20 s ACN/ H2O (VV=1∶1) - 70
24 Fluorescein 538/567 nm 39.2 nM 14 min PBS HepG2 cells 76
25 Fluorescein 480/520 nm - - MeCN/PBS A549 cells 77
26 Fluorescein 460/515 nm 182 nM 30 min CH3CN/PBS (VV=6∶4) A549 cells 78
27 Fluorescein 337/520 nm 6.5 μM 27 min DMSO/PBS (VV=1∶3) - 79
28 Fluorescein 491/519 nm 0.021 μM - DMSO/PBS (VV=5∶95) HeLa cells 80
29 Fluorescein 450/532 nm 3.0 nM 5 min EtOH/PBS(VV=9∶1) L929 cells 81
30 Fluorescein - 0.6 μM - PBS Human Serum 82
31 Naphthalimide 620/665 nm 0.093 μM 20 min PBS HeLa cells 90
32 Naphthalimide 365/413 nm 0.31 nM 80 min EtOH/PBS(VV=9∶1) THLE2 cells 91
33 Naphthalimide 450/550 nm 0.31 nM 5 min PBS Zebrafish 92
34 Naphthalimide 402/559 nm 0.87 μM 55 min DMF/ H2O (VV=7∶3) Livig cells 93
35 Naphthalimide 405/571nm 16.7 nM 40 min PBS MCF-7 cells 94
36 Naphthalimide 488/590 nm 9.87 nM 4 min CTAB/PBS (VV=1∶9) MCF-7 cells 95
37 Naphthalimide 450/550 nm 0.065 μM 2 h CTAB/PBS (VV=1∶9) MCF-7 cells 96
38 BODIPY 365/524 nm 52 nM 10 min ACN/PBS (VV=2∶3) HeLa cells 107
39 BODIPY 465/567 nm 51 nM - CH3CN/PBS (V∶V=1∶1) HeLa cells 108
40 BODIPY 700/730 nm 5.23 μM 3 min THF/PBS (VV=1∶1) - 109
41 BODIPY 550/617 nm 72 nM 2 min ACN/PBS VV=2∶3) HeLa cells 110
42 BODIPY 580/685nm 118 nM 90 min CH3CN/PBS (VV=1∶1) HeLa cells 111
43 BODIPY 365/407 nm 4.1 nM 2 min DMSO/PBS (VV=1∶9) HepG2 cells 112
44 BODIPY 370/521 nm 33 nM - DMSO/PBS (VV=1∶1) HepG2 cells 113
45 BODIPY 480/512 nm - 60 min EtOH/PBS (VV=1∶2) HeLa cells 114
46 BODIPY 670/710 nm 2.29 μM - ACN/PBS (VV=1∶4) HepG2 cells 115
47 Cyanine 660/750 nm 0.39 μM 90 min DMSO/PBS (VV=1∶1) HeLa cells 119
48 Cyanine 561/604 nm 13.4 μM 30 min DMSO/PBS (VV=1∶9) Mitochondria 120
49 Cyanine 535/635 nm 0.09 μM 30 min HEPES Lung cancer 121
50 Cyanine 650/743 nm 0.17 μM 60 min HEPES HeLa cells 122
51 Cyanine 650/776 nm 0.47 μM 25 min DMSO/PBS (VV=1∶4) MCF-7 cells 123
52 Cyanine 470/550 nm 94 nM 60 min MeCN/PBS (VV=1∶9) MCF-7 cells U87 cells 124
53 Cyanine 565/635 nm 228 nM - DMSO/PBS (VV=3∶7) HeLa cells 125
54 Cyanine 680/780 nm 7.7 μM 15 min DMSO/PBS (VV=1∶1) HeLa cells 126
55 NBD 478/550 nm 0.12 μM - DMSO/H2O (VV=1∶9) GBM cells 133
56 NBD 365/470 nm 22.6 nM 30 min DMF/PBS (VV=2∶3) HeLa cells 134
57 NBD 488/555 nm 0.44 μM 210 s DMSO/PBS (VV=1∶9) HeLa cells 135
58 NBD 470/565 nm 0.008 μM 25 min DMSO/PBS (VV=1∶4) HeLa cells 136
59 NBD 470/547 nm 0.015 μM 10 min DMF/PBS (VV=1∶9) HeLa cells 137
60 Isophorone 365/680 nm 36.93 nM 6 min EtOH/PBS (VV=1∶1) HeLa cells 138
61 Isoflurone 450/660 nm 79 nM - DMSO/PBS (VV=3∶7) HepG2 cells 139
62 Isophorone 505/666 nm 86.9 nM - DMSO/PBS (VV=1∶4) HeLa cells 140
63 Chalcone 400/504 nm 80 nM - DMSO/PBS (VV=1∶1) HeLa cells 141
64 Schiff base 445/526 nm 36.4 nM - EtOH/PBS (VV=3∶7) Zebrafish 142
65 Imidazo [1,5-a]pyridine 340/475 nm 0.07 μM 10 min DMSO/PBS (VV=1∶9) HeLa cells 143
66 Flavonoid 365/530 nm 42.3 nM 15 min DMSO/H2O (VV=1∶4) HeLa cells 144
67 Naphthalene 380/524 nm 11 nM 10 min DMSO/PBS (VV=1∶99) HeLa cells 145
68 CQDs - 242 nM - Aqueous River water 150
69 CQDs 368/530 nm 0.96 nM 2.5 min Aqueous Drug/Water 151
70 GQDs 420/480 nm 140 nM - Aqueous - 158
71 GQDs - - - Aqueous Blood 159
72 GQDs - 1.69 nM - PBS Blood 160
73 GQDs - 0.234 nM - PBS Blood 160
74 AuNCs 430/600 nm 0.42 μM 10 min Aqueous Serum 161
75 AuNCs 495/660 nm 30.4 nM - PBS Liver 162
76 AuNCs/AuNPs - 1.4 μM 6 min Tris-HCl buffer solution Serum 163
77 AuNPs 88 nM 13 min Aqueous Drug 164
78 AuNPs - 1 μM - Aqueous - 166
79 AuNPs - 5.88 μM 2 min PBS - 167
80 N,S-CDs 450/513 nm 23 nM - Aqueous HCT 116 cells 168
81 AgNPs/CDs 365/425 nm 68.5 nM - BR buffer - 169
82 CDs 410/530 nm 0.34 μM - Aqueous HCT 116 cells 170
83 N-CDs 365/450 nm 0.21 μM - PBS Serum 171
84 CDs 360/460 nm 0.047 μM - Acetate buffer - 172
85 CDs 450/556 nm - - Pure water Lysosome 173
86 GFP 493/620 nm 18.7 μM 30 min EtOH/PBS (VV=1∶1) Bel-7402 cells 176
87 GFP 470/534 nm 4.98 nM 27 min EtOH/PBS (VV=1∶1) Bel-7402 cells 177
[1]
Yin H F, Gao M J, Jiang W J, Gan Y H, Li C, Kang Y F, Meng Y L, Xin Z H. Spectrosc. Lett., 2020, 53(9): 664.

doi: 10.1080/00387010.2020.1821063     URL    
[2]
Liu Y, Wu Y X, Zhang D L, Zhong H M, Li D, He K D, Wei W T, Yu S R. Talanta, 2020, 220: 121364.
[3]
Zhang R, Yong J X, Yuan J L, Xu Z P. Coord. Chem. Rev., 2020, 408: 213182.
[4]
Al-Busafi S N, Al-Kindi S M, Suliman F E O, Al-Kalbani A A. Asian J. Chem., 2019, 31(12): 2909.

doi: 10.14233/ajchem.2019.22286     URL    
[5]
Chao J B, Duan Y X, Zhang Y B, Huo F J, Yin C X. J. Mol. Struct., 2020, 1219: 128629.
[6]
Chen S, Hou P, Sun J, Wang H, Liu L. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 241: 118655.
[7]
Chen S, Hou P, Wang J, Fu S, Liu L. J. Photochem. Photobiol. A, 2018, 363: 7.

doi: 10.1016/j.jphotochem.2018.05.025     URL    
[8]
Chen T, Pei X, Yue Y, Huo F, Yin C. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2019, 209: 223.

doi: 10.1016/j.saa.2018.10.049     URL    
[9]
Chen Z Y, Sun Q, Yao Y H, Fan X X, Zhang W B, Qian J H. Biosens. Bioelectron., 2017, 91: 553.

doi: 10.1016/j.bios.2017.01.013     URL    
[10]
Zhang Y Y, Yang M, Shao Z Y, Xu H D, Chen Y, Yang Y L, Xu W F, Liao X L. Microchem. J., 2020, 158: 105327.
[11]
Zhou J, Yu C M, Li Z, Peng P P, Zhang D T, Han X, Tang H Z, Wu Q, Li L, Huang W. Anal. Methods, 2019, 11(10): 1312.

doi: 10.1039/C9AY00041K     URL    
[12]
Zhou T T, Yang Y T, Zhou K Y, Xu W Z, Li W. Chin. J. Org. Chem., 2019, 39(12): 3498.

doi: 10.6023/cjoc201906004     URL    
[13]
Zhang S W, Xia Q W, Wang F, Wang T, Jia X D, Yuan Y, Zhang M, Chen G. Tetrahedron Lett., 2021, 87: 153157.
[14]
Yang Y, Wang H, Wei Y L, Zhou J, Zhang J F, Zhou Y. Chin. Chem. Lett., 2017, 28(10): 2023.

doi: 10.1016/j.cclet.2017.08.051     URL    
[15]
Jin Q, Feng L, Wang D D, Wu J J, Hou J, Dai Z R, Sun S G, Wang J Y, Ge G B, Cui J N, Yang L. Biosens. Bioelectron., 2016, 83: 193.

doi: 10.1016/j.bios.2016.04.075     URL    
[16]
Weerapana E, Wang C, Simon G M, Richter F, Khare S, Dillon M B D, Bachovchin D A, Mowen K, Baker D, Cravatt B F. Nature, 2010, 468(7325): 790.

doi: 10.1038/nature09472     URL    
[17]
Boer S A, Cox R P, Beards M J, Wang H X, Donald W A, Bell T D M, Turner D R. Chem. Commun., 2019, 55(5): 663.

doi: 10.1039/C8CC09191A     URL    
[18]
Chen L Y, Oh H, Wu D, Kim M H, Yoon J. Chem. Commun., 2018, 54(18): 2276.

doi: 10.1039/C7CC09901K     URL    
[19]
Manna A K, Mondal J, Rout K, Patra G K. J. Photochem. Photobiol. A Chem., 2018, 367: 74.

doi: 10.1016/j.jphotochem.2018.08.018     URL    
[20]
Qiao H X, Meng Y L, Zhang Y X, Sun J X, Wang T, Zhang X J, Wang F F, Kang Y F. Chem. Pap., 2018, 72(6): 1461.

doi: 10.1007/s11696-018-0401-2     URL    
[21]
Goud N S, Pooladanda V, Mahammad G S, Jakkula P, Gatreddi S, Qureshi I A, Alvala R, Godugu C, Alvala M. Chem. Biol. Drug Des., 2019, 94(5): 1919.

doi: 10.1111/cbdd.13578     URL    
[22]
Zhang Y D, Song N, Li Y Y, Yang Z Y, Chen L, Sun T T, Xie Z G. J. Mater. Chem. B, 2019, 7(30): 4717.

doi: 10.1039/C9TB01165J     URL    
[23]
Lingaraju G S, Balaji K S, Jayarama S, Anil S M, Kiran K R, Sadashiva M P. Bioorg. Med. Chem. Lett., 2018, 28(23/24): 3606.

doi: 10.1016/j.bmcl.2018.10.046     URL    
[24]
Savanur H M, Pawashe G M, Kim K M, Kalkhambkar R G. ChemistrySelect, 2018, 3(33): 9648.

doi: 10.1002/slct.201801408     URL    
[25]
Chang H Q, Zhao X L, Wu W N, Jia L, Wang Y. J. Lumin., 2017, 182: 268.

doi: 10.1016/j.jlumin.2016.10.041     URL    
[26]
Li S, Cao D, Meng X, Hu Z, Li Z, Yuan C, Zhou T, Han X, Ma W. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 230: 118022.
[27]
Zhu L, Yang X Q, Luo X B, Hu B, Huang W. Inorg. Chem. Commun., 2020, 114: 107823.
[28]
Li S L, Cao D L, Meng X J, Hu Z Y, Li Z C, Yuan C C, Zhou T, Han X H, Ma W B. J. Photochem. Photobiol. A Chem., 2020, 392: 112427.
[29]
Puthiyedath T, Bahulayan D. Sens. Actuat. B Chem., 2018, 272: 110.

doi: 10.1016/j.snb.2018.05.126     URL    
[30]
Cao C, Feng Y, Li H, Yang Y, Song X R, Wang Y Z, Zhang G L, Dou W, Liu W S. Talanta, 2020, 219: 121353.
[31]
Cao C, Jing C L, Feng Y, Song X R, Liu W S, Zhang G L, Dou W, Ru J X. Dyes Pigments, 2022, 197: 109823.
[32]
Cheng T Y, Huang W M, Gao D, Yang Z, Zhang C J, Zhang H X, Zhang J J, Li H, Yang X F. Anal. Chem., 2019, 91(16): 10894.
[33]
Chu Y F, Cen Y J, Song Y X, Xu Z X, Hu L P, Li H Q, Yang C L. Color. Technol., 2020, 136(4): 381.

doi: 10.1111/cote.12476     URL    
[34]
Zhang Y B, Zhang Y, Yue Y K, Chao J B, Huo F J, Yin C X. Sens. Actuat. B Chem., 2020, 320: 128348.
[35]
Zou F X, Wang C, Song W W, Shen L J, Xu R S, Wang M, Sun T M, Wang J. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 257: 119775.
[36]
Xiao Y T, Guo K, Wei J, Gao X W, Yi D, Li Y, Yu X Q, Zhang C, Wang Q. Tetrahedron Lett., 2020, 61(44): 152462.
[37]
Hien N K, van Bay M, Tran P D, Khanh N T, Luyen N D, Vo Q V, Van D U, Nam P C, Quang D T. RSC Adv., 2020, 10(60): 36265.
[38]
Gao Z G, Kan C, Liu H B, Zhu J, Bao X F. Tetrahedron, 2019, 75(9): 1223.

doi: 10.1016/j.tet.2019.01.029     URL    
[39]
Zhang Y B, Xia S, Fang M X, Mazi W F, Zeng Y B, Johnston T, Pap A, Luck R L, Liu H Y. Chem. Commun., 2018, 54(55): 7625.

doi: 10.1039/C8CC03520B     URL    
[40]
Tian X Y, Liu H W, Wei F F, Wang X C, Zhao S N, Liu C J, Tse Y C, Wong K M C. ChemPlusChem, 2020, 85(8): 1639.

doi: 10.1002/cplu.202000384     URL    
[41]
Gu T C, Mo S Y, Mu Y Q, Huang X, Hu L M. Sens. Actuat. B Chem., 2020, 309: 127731.
[42]
Shen S L, Huang X Q, Jiang H L, Lin X H, Cao X Q. Anal. Chimica Acta, 2019, 1046: 185.

doi: 10.1016/j.aca.2018.09.054     URL    
[43]
Leng J C, Xin J T, Zhou H, Li K, Hu W, Zhang Y J. Int. J. Quantum Chem., 2021, 121(2): e26345.
[44]
Gandra U R, Courjaret R, Machaca K, Al-Hashimi M, Bazzi H S. Sci. Rep., 2020, 10: 19519.
[45]
Zhu Z F, Ding H C, Wang Y S, Fan C B, Tu Y Y, Liu G, Pu S Z. J. Photochem. Photobiol. A Chem., 2020, 400: 112657.
[46]
Yang Y, Guo Z, Ye J, Gao C Y, Liu J, Duan L. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 248: 119238.
[47]
Zhang M, Shen C, Jia T, Qiu J, Zhu H, Gao Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 231: 118105.
[48]
Shellaiah M, Thirumalaivasan N, Aazaad B, Awasthi K, Sun K W, Wu S P, Lin M C, Ohta N. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 242: 118757.
[49]
Li Z P, Xiong W, He X J, Qi X L, Ding F, Shen J L. Anal., 2020, 145(12): 4239.

doi: 10.1039/D0AN00582G     URL    
[50]
Gong S Y, Hong J X, Zhou E B, Feng G Q. Talanta, 2019, 201: 40.

doi: 10.1016/j.talanta.2019.03.111     URL    
[51]
Qian M, Zhang L W, Pu Z J, Xia J, Chen L L, Xia Y, Cui H Y, Wang J Y, Peng X J. J. Mater. Chem. B, 2018, 6(47): 7916.

doi: 10.1039/C8TB02218F     URL    
[52]
Yu Y T, Wang J B, Xiang H, Ying L K, Wu C Y, Zhou H W, Liu H Y. Dyes Pigments, 2020, 183: 108710.
[53]
Liu K, Gu H, Sun Y Z, Xu C, Yang S Z, Zhu B L. Food Chem., 2021, 356: 129658.
[54]
Xia S, Zhang Y B, Fang M X, Mikesell L, Steenwinkel T E, Wan S L, Phillips T, Luck R L, Werner T, Liu H Y. ChemBioChem, 2019, 20(15): 1986.

doi: 10.1002/cbic.201900071     URL    
[55]
Liu Z K, Wang Q Q, Wang H, Su W T, Dong S L. Sensors, 2020, 20(6): 1746.

doi: 10.3390/s20061746     URL    
[56]
Xue H Y, Yu M, He K Y, Liu Y N, Cao Y Y, Shui Y H, Li J, Farooq M, Wang L. Anal. Chimica Acta, 2020, 1127: 39.

doi: 10.1016/j.aca.2020.06.039     URL    
[57]
Maiti P, Singha T, Chakraborty U, Roy S D, Karmakar P, Dey B, Hussain S A, Paul S, Paul P K. Mater. Chem. Phys., 2019, 234: 158.

doi: 10.1016/j.matchemphys.2019.06.001     URL    
[58]
Wang H Y, Zhao S F, Xu Y K, Li L L, Li B, Pei M S, Zhang G Y. J. Mol. Struct., 2020, 1203: 127384.
[59]
Zheng Y L, Zhang H C, Tian D H, Duan D C, Dai F, Zhou B. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 238: 118429.
[60]
Yan F Y, Sun J R, Zang Y Y, Sun Z H, Zhang H, Wang X. J. Iran. Chem. Soc., 2020, 17(12): 3179.

doi: 10.1007/s13738-020-01998-9     URL    
[61]
Zhu J, Gao Q, Tong Q, Wu G. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 225: 117506.
[62]
Ren H X, Huo F J, Zhang Y B, Zhao S H, Yin C X. Sens. Actuat. B Chem., 2020, 319: 128248.
[63]
Anusuyadevi K, Wu S P, Velmathi S. J. Photochem. Photobiol. A Chem., 2020, 403: 112875.
[64]
Zhang X, Zhang L, Ma W W, Zhou Y, Lu Z N, Xu S Y. Front. Chem., 2019, 7: 32.

doi: 10.3389/fchem.2019.00032     pmid: 30775362
[65]
Wei Y N, Lin B, Shu Y, Wang J H. Anal., 2021, 146(14): 4642.

doi: 10.1039/D1AN00758K     URL    
[66]
Zhao L H, He X, Huang Y B, Li J L, Li Y L, Tao S, Sun Y, Wang X H, Ma P Y, Song D Q. Sens. Actuat. B Chem., 2019, 296: 126571.
[67]
Long Y, Liu J R, Tian D H, Dai F, Zhang S X, Zhou B. Anal. Chem., 2020, 92(20): 14236.
[68]
Tang L J, Xu D, Tian M Y, Yan X M. J. Lumin., 2019, 208: 502.

doi: 10.1016/j.jlumin.2019.01.022     URL    
[69]
Yang Y S, Yuan Z H, Zhang X P, Xu J F, Lv P C, Zhu H L. J. Mater. Chem. B, 2019, 7(18): 2911.

doi: 10.1039/c9tb00273a    
[70]
Gholami M D, Manzhos S, Sonar P, Ayoko G A, Izake E L. Anal., 2019, 144(16): 4908.

doi: 10.1039/C9AN01055F     URL    
[71]
Liu Y C, Xiang K Q, Tian B Z, Zhang J L. Tetrahedron Lett., 2016, 57(23): 2478.

doi: 10.1016/j.tetlet.2016.04.068     URL    
[72]
Picard-Lafond A, Larivière D, Boudreau D. ACS Omega, 2020, 5(1): 701.

doi: 10.1021/acsomega.9b03333     pmid: 31956820
[73]
Erdemir S, Kocyigit O. Dyes Pigments, 2017, 145: 72.

doi: 10.1016/j.dyepig.2017.05.053     URL    
[74]
Li X Y, Yu Z Y, Li N, Jia H S, Wei H, Wang J, Song Y T. Dyes Pigments, 2019, 162: 281.

doi: 10.1016/j.dyepig.2018.10.044     URL    
[75]
Kang H M, Xu H T, Fan C B, Liu G, Pu S Z. J. Photochem. Photobiol. A Chem., 2018, 367: 465.

doi: 10.1016/j.jphotochem.2018.09.001     URL    
[76]
Ji Y, Dai F, Zhou B. Talanta, 2019, 197: 631.

doi: 10.1016/j.talanta.2019.01.084     URL    
[77]
Shi L M, Yan C X, Guo Z Q, Chi W J, Wei J L, Liu W M, Liu X G, Tian H, Zhu W H. Nat. Commun., 2020, 11: 793.

doi: 10.1038/s41467-020-14615-3     URL    
[78]
Karaku塂 E, Sayar M, Dartar S, Kaya B U, Emrullahoğlu M. Chem. Commun., 2019, 55(34): 4937.

doi: 10.1039/C9CC01774G     URL    
[79]
Wang J L, Wang H, Hao Y F, Yang S X, Tian H Y, Sun B G, Liu Y G. Food Chem., 2018, 262: 67.

doi: 10.1016/j.foodchem.2018.04.084     URL    
[80]
Du W, Liu R J, Fang J G, Gao H, Wang Y W, Peng Y. Tetrahedron, 2019, 75(36): 130477.
[81]
Liu C, Shang Y, Zhao T, Liang L J, He S, Zhao L C, Zeng X S, Wang T H. Sens. Actuat. B Chem., 2021, 348: 130632.
[82]
Qin X, Yuan C L, Chen Y Y, Wang Y L. J. Photochem. Photobiol. B Biol., 2020, 210: 111986.
[83]
Huang L N, Chen Y, Zhao Y Q, Wang Y M, Xiong J W, Zhang J F, Wu X H, Zhou Y. Chin. Chem. Lett., 2020, 31(11): 2941.

doi: 10.1016/j.cclet.2020.06.006     URL    
[84]
Yuan W W, zhong X L, Han Q R, Jiang Y L, Shen J, Wang B X. J. Photochem. Photobiol. A Chem., 2020, 400: 112701.
[85]
Li M, Du F, Xue P, Tan X, Liu S, Zhou Y, Chen J, Bai L. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 227: 117760.
[86]
Tian M J, Wang C Y, Ma Q J, Bai Y, Sun J G, Ding C F. ACS Omega, 2020, 5(29): 18176.
[87]
Ou P, Wang Y, Hao C, Peng Y, Zhou L Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 245: 118886.
[88]
Liu J, Liu X J, Lu S S, Zhang L L, Feng L, Zhong S L, Zhang N, Bing T, Shangguan D H. Anal., 2020, 145(20): 6549.

doi: 10.1039/D0AN01314E     URL    
[89]
He M, Sun H, Wei J, Zhang R, Han X, Ni Z. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 247: 119138.
[90]
Hou X, Li Z, Li Y, Zhou Q, Liu C, Fan D, Wang J, Xu R, Xu Z. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 246: 119030.
[91]
Aydin D, Karuk Elmas S N, Akin Geyik G, Bostanci A, Arslan F N, Savran T, Sadi G, Yilmaz I. New J. Chem., 2021, 45(36): 16617.
[92]
Zhu H C, Zhang H M, Liang C X, Liu C Y, Jia P, Li Z L, Yu Y M, Zhang X, Zhu B C, Sheng W L. Anal., 2019, 144(23): 7010.

doi: 10.1039/C9AN01760G     URL    
[93]
Wang Y P, Chen J, Shu Y, Wang J H, Qiu H D. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2022, 266: 120409.
[94]
Li K B, Qu W B, Shen Q X, Zhang S Q, Shi W, Dong L, Han D M. Dyes Pigments, 2020, 173: 107918.
[95]
Rong Y F, Wang C, Chuai P F, Song Y F, Zhou S, Hou P, Liu X J, Wei L H, Song X Z. New J. Chem., 2019, 43(33): 13212.
[96]
Cao J, Jiang X X, Fu N Y. Dyes Pigments, 2020, 174: 107978.
[97]
Yue J L, Wang N N, Wang J M, Tao Y F, Wang H, Liu J Y, Zhang J, Jiao J R, Zhao W L. Anal. Methods, 2021, 13: 2908.

doi: 10.1039/D1AY00740H     URL    
[98]
Uriel C, Permingeat C, Ventura J, Avellanal-Zaballa E, Bañuelos J, García-Moreno I, Gómez A M, Lopez J C. Chem. Eur. J., 2020, 26(24): 5304.

doi: 10.1002/chem.202000766     URL    
[99]
Sun R P, Wang L S, Jiang C, Du Z Y, Chen S W, Wu W S. J. Fluoresc., 2020, 30(4): 883.

doi: 10.1007/s10895-020-02544-9     URL    
[100]
Song Y T, Tao J Y, Wang Y, Cai Z C, Fang X Y, Wang S F, Xu H J. Inorganica Chimica Acta, 2021, 516: 120099.
[101]
Yang J, Zhang R, Zhao Y, Tian J, Wang S, Gros C P, Xu H. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 248: 119199.
[102]
Zhang J, Wang N N, Ji X, Tao Y F, Wang J M, Zhao W L. Chem. Eur. J., 2020, 26(19): 4172.

doi: 10.1002/chem.201904470     URL    
[103]
Gao L X, Tian M, Zhang L, Liu Y, Jiang F L. Dyes Pigments, 2020, 180: 108434.
[104]
Zhu X Y, Wu H, Guo X F, Wang H. Dyes Pigments, 2019, 165: 400.

doi: 10.1016/j.dyepig.2019.02.050     URL    
[105]
Li C, Sun Q, Zhao Q, Cheng X. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 228: 117720.
[106]
Cao T, Gong D Y, Zheng L, Wang J M, Qian J, Liu W, Cao Y P, Iqbal K, Qin W W, Iqbal A. Anal. Chimica Acta, 2019, 1078: 168.

doi: 10.1016/j.aca.2019.06.033     URL    
[107]
Wang N N, Chen M, Gao J H, Ji X, He J L, Zhang J, Zhao W L. Talanta, 2019, 195: 281.

doi: 10.1016/j.talanta.2018.11.066     URL    
[108]
Wang N N, Ji X, Wang H, Wang X H, Tao Y F, Zhao W L, Zhang J. Anal. Sci., 2020, 36(11): 1317.

doi: 10.2116/analsci.20P134     URL    
[109]
Pham T C, Choi Y, Bae C, Tran C S, Kim D, Jung O S, Kang Y C, Seo S, Kim H S, Yun H, Zhou X, Lee S Y. RSC Adv., 2021, 11(17): 10154.
[110]
Ji X, Wang N N, Zhang J, Xu S, Si Y B, Zhao W L. Dyes Pigments, 2021, 187: 109089.
[111]
Tao Y F, Ji X, Zhang J, Jin Y, Wang N N, Si Y B, Zhao W L. ChemBioChem, 2020, 21(21): 3131.

doi: 10.1002/cbic.202000313     URL    
[112]
Mei Y, Li H, Song C Z, Chen X G, Song Q H. Chem. Commun., 2021, 57(79): 10198.
[113]
Wang L F, Qian Y. J. Photochem. Photobiol. A Chem., 2019, 372: 122.

doi: 10.1016/j.jphotochem.2018.12.013     URL    
[114]
Wang L, Wang J B, Xia S, Wang X X, Yu Y T, Zhou H W, Liu H Y. Talanta, 2020, 219: 121296.
[115]
Jia L, Niu L Y, Yang Q Z. Anal. Chem., 2020, 92(15): 10800.
[116]
Zhou E B, Gong S Y, Feng G Q. Sens. Actuat. B Chem., 2019, 301: 127075.
[117]
Aristova D, Volynets G, Chernii S, Losytskyy M, Balanda A, Slominskii Y, Mokhir A, Yarmoluk S, Kovalska V. R. Soc. Open Sci., 2020, 7(7): 200453.
[118]
Jin D, Wang B W, Hou Y Q, Du Y C, Li X, Chen L G. Dyes Pigments, 2019, 170: 107612.
[119]
Yang X, Wang Y, Zhao M X, Yang W. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2019, 212: 10.

doi: 10.1016/j.saa.2018.12.042     URL    
[120]
Zhu Y D, Pan H T, Song Y Y, Jing C, Gan J A, Zhang J J. Dyes Pigments, 2021, 191: 109376.
[121]
Zhang X Y, He N, Huang Y, Yu F B, Li B W, Lv C J, Chen L X. Sens. Actuat. B Chem., 2019, 282: 69.

doi: 10.1016/j.snb.2018.11.056     URL    
[122]
Men Y H, Zhou X M, Yan Z J, Niu L Q, Luo Y, Wang J M, Wang J H. Anal. Sci., 2020, 36(9): 1053.

doi: 10.2116/analsci.20P016     URL    
[123]
Fang H B, Chen Y C, Wang Y J, Geng S S, Yao S K, Song D F, He W J, Guo Z J. Sci. China Chem., 2020, 63(5): 699.

doi: 10.1007/s11426-019-9688-y     URL    
[124]
Li R X, Kassaye H, Pan Y P, Shen Y Z, Li W Q, Cheng Y R, Guo J X, Xu Y, Yin H P, Yuan Z W. Biomater. Sci., 2020, 8(21): 5994.

doi: 10.1039/D0BM01237H     URL    
[125]
Niu L Q, Luo Y, Gan Y, Cao Q J, Zhu C J, Wang M X, Wang J M, Zhang W H, Wang J H. Talanta, 2020, 219: 121291.
[126]
Zhang H H, Yan C X, Li H, Shi L, Wang R F, Guo Z Q, Zhu W H. ACS Appl. Bio Mater., 2021, 4(3): 2001.

doi: 10.1021/acsabm.0c00260     pmid: 35014325
[127]
de Almeida R F M, Santos T C B, da Silva L C, Suchodolski J, Krasowska A, Stokowa-Sołtys K, Puchalska M, Starosta R. Dyes Pigments, 2021, 184: 108771.
[128]
Cao X J, Chen L N, Zhang X, Liu J T, Chen M Y, Wu Q R, Miao J Y, Zhao B X. Anal. Chimica Acta, 2016, 920: 86.

doi: 10.1016/j.aca.2016.03.029     URL    
[129]
Wang J, Niu L, Huang J, Yan Z, Wang J,. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2018, 192: 52.

doi: 10.1016/j.saa.2017.10.064     URL    
[130]
Xu Z Y, Wu Z Y, Tan H Y, Yan J W, Liu X L, Li J Y, Xu Z Y, Dong C Z, Zhang L. Anal. Methods, 2018, 10(27): 3375.

doi: 10.1039/C8AY00797G     URL    
[131]
Wang J M, Niu L Q, Huang J, Yan Z J, Zhou X M, Wang J H. Dyes Pigments, 2018, 158: 151.

doi: 10.1016/j.dyepig.2018.05.039     URL    
[132]
Yang Y, Zhang D, Xu M, Wang J, Chen J, Wang L. Monatsh. Chem., 2018, 149 (6): 1003.

doi: 10.1007/s00706-018-2143-9     URL    
[133]
An J M, Kang S, Huh E, Kim Y, Lee D, Jo H, Joung J F, Kim V J, Lee J Y, Dho Y S, Jung Y, Hur J K, Park C, Jung J, Huh Y, Ku J L, Kim S, Chowdhury T, Park S, Kang J S, Oh M S, Park C K, Kim D. Chem. Sci., 2020, 11(22): 5658.

doi: 10.1039/D0SC01085E     URL    
[134]
Lu Z L, Lu Y N, Sun X, Fan C H, Long Z Y, Gao L Y. Bioorg. Chem., 2019, 92: 103215.
[135]
Zhou N, Huo F, Yue Y, Ma K, Yin C. Chin. Chem. Lett., 2020, 31 (11): 2970.

doi: 10.1016/j.cclet.2020.07.001     URL    
[136]
Jing X, Yu F, Lin W. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 240: 118555.
[137]
Yang M W, Fan J L, Sun W, Du J J, Long S R, Peng X J. Dyes Pigments, 2019, 168: 189.

doi: 10.1016/j.dyepig.2019.04.056     URL    
[138]
Qian M, Zhang L W, Wang J Y. New J. Chem., 2019, 43(24): 9614.

doi: 10.1039/C9NJ01643K     URL    
[139]
Qian M, Xia J, Zhang L W, Chen Q X, Guo J L, Cui H Y, Kafuti Y S, Wang J Y, Peng X J. Sens. Actuat. B Chem., 2020, 321: 128441.
[140]
Ge C P, Shen F G, Yin Y Y, Chang K W, Zhang X, Zhou P X, Li J M, Liu Y X, Lu C B. Talanta, 2021, 223: 121758.
[141]
Zhao G M, Yang W G, Li F Z, Deng Z M, Hu Y H. J. Lumin., 2020, 226: 117506.
[142]
Guo X J, Wan C Y, Li J J, Xiao Y Z, Cao Q L, Zhang Q, Zhang P, Ding C F. Dyes Pigments, 2022, 197: 109880.
[143]
Sheng H C, Hu Y H, Zhou Y, Fan S M, Cao Y, Zhao X X, Yang W G. Dyes Pigments, 2019, 160: 48.

doi: 10.1016/j.dyepig.2018.07.036     URL    
[144]
Li X R, Ma H, Qian J, Cao T, Teng Z D, Iqbal K, Qin W W, Guo H C. Talanta, 2019, 194: 717.

doi: 10.1016/j.talanta.2018.10.095     URL    
[145]
Long Z, Chen L, Dang Y C, Chen D G, Lou X D, Xia F. Talanta, 2019, 204: 762.

doi: S0039-9140(19)30689-7     pmid: 31357363
[146]
Sahoo D, Mandal A, Mandal P, Set J. J. Photochem. Photobiol. A Chem., 2022, 422: 113562.
[147]
Chen J R, Sun N, Chen H H, Zhang Y T, Wang X L, Zhou N D. Food Chem., 2022, 367: 130754.
[148]
Kou X L, Jiang S C, Park S J, Meng L Y. Dalton Trans., 2020, 49(21): 6915.

doi: 10.1039/D0DT01004A     URL    
[149]
Molaei M J. Anal. Methods, 2020, 12(10): 1266.

doi: 10.1039/C9AY02696G     URL    
[150]
Jiang X Q, Huang J B, Chen T Y, Zhao Q, Xu F, Zhang X M. Int. J. Biol. Macromol., 2020, 153: 412.

doi: 10.1016/j.ijbiomac.2020.03.026     URL    
[151]
Wang Z H, Zhang L, Hao Y M, Dong W J, Liu Y, Song S M, Shuang S M, Dong C, Gong X J. Anal. Chimica Acta, 2021, 1144: 1.

doi: 10.1016/j.aca.2020.11.054     URL    
[152]
Hai X, Feng J, Chen X W, Wang J H. J. Mater. Chem. B, 2018, 6(20): 3219.

doi: 10.1039/C8TB00428E     URL    
[153]
Yan Y B, Gong J, Chen J, Zeng Z P, Huang W, Pu K Y, Liu J Y, Chen P. Adv. Mater., 2019, 31(21): 1808283.
[154]
Fang B Y, Li C, Song Y Y, Tan F, Cao Y C, Zhao Y D. Biosens. Bioelectron., 2018, 100: 41.

doi: S0956-5663(17)30589-4     pmid: 28858680
[155]
Gao X, Zhang B, Zhang Q, Tang Y W, Liu X Y, Li J R. Colloids Surf. B Biointerfaces, 2018, 172: 207.

doi: 10.1016/j.colsurfb.2018.08.010     URL    
[156]
Kadian S, Sethi S K, Manik G. Mater. Chem. Front., 2021, 5(2): 627.

doi: 10.1039/D0QM00550A     URL    
[157]
Jiménez-López J, Llorent-Martínez E J, Ortega-Barrales P, Ruiz-Medina A. Microchimica Acta, 2019, 186(12): 781.

doi: 10.1007/s00604-019-3920-9     URL    
[158]
Deng X C, Zhao J W, Ding Y, Tang H L, Xi F N. New J. Chem., 2021, 45(40): 19056.
[159]
Liu X T, Su X G. Microchimica Acta, 2020, 187(9): 1.

doi: 10.1007/s00604-019-3921-8     URL    
[160]
Xue G, Yu S, Qiang Z, Xiuying L, Tang L, Jiangrong L. Anal. Chim. Acta, 2020, 1108: 46.

doi: 10.1016/j.aca.2020.01.062     URL    
[161]
Zhang Y Y, Xu H D, Chen Y, You X S, Pu Y X, Xu W F, Liao X L. J. Fluoresc., 2020, 30(6): 1491.

doi: 10.1007/s10895-020-02618-8     URL    
[162]
Niu Y X, Ding T, Liu J M, Zhang G L, Tong L L, Cheng X F, Yang Y M, Chen Z Z, Tang B. Talanta, 2021, 223: 121745.
[163]
Li X F, Qiao J, Li Z W, Qi L. Anal., 2020, 145(6): 2233.

doi: 10.1039/C9AN02495F     URL    
[164]
Nguyen Q K, Hoang T H, Bui X T, Nguyen T A H, Pham T D, Pham T N M. Microchem. J., 2021, 168: 106481.
[165]
Thuy Nguyen T T, Han O A, Lim E B, Haam S, Park J S, Lee S W. RSC Adv., 2021, 11(16): 9664.

doi: 10.1039/d1ra00013f     pmid: 35423462
[166]
Liu L, Hao Y J, Li Z, Chen C, Wu M Y, Feng S. Chem. Pap., 2020, 74(6): 1839.

doi: 10.1007/s11696-019-01032-0     URL    
[167]
Chaicham C, Tuntulani T, Promarak V, Tomapatanaget B. Sens. Actuat. B Chem., 2019, 282: 936.

doi: 10.1016/j.snb.2018.11.150     URL    
[168]
Mohandoss S, Palanisamy S, Priya V V, Mohan S K, Shim J J, Yelithao K, You S G, Lee Y R. Microchem. J., 2021, 167: 106280.
[169]
Xiang F, Li J Z, Liu Z D. Anal., 2019, 144(23): 7057.

doi: 10.1039/C9AN01488H     URL    
[170]
Natesan T, Wu S P. ACS Appl. Bio. Mater., 2020, 3: 6439.

doi: 10.1021/acsabm.0c00868     URL    
[171]
Zhao N, Song J Q, Huang Z, Yang X Y, Wang Y S, Zhao L S. RSC Adv., 2021, 11(53): 33662.
[172]
Lu C F, Liu Y, Wen Q, Liu Y, Wang Y Y, Rao H B, Shan Z, Zhang W, Wang X X. Nanotechnology, 2020, 31(44): 445703.
[173]
Liu Q L, Niu X Y, Zhang Y, Zhao Y, Xie K X, Yang B R, He Q, Lv S Y, Li L. Nanoscale, 2020, 12(24): 13010.
[174]
Liu Y, Wolstenholme C H, Carter G C, Liu H B, Hu H, Grainger L S, Miao K, Fares M, Hoelzel C A, Yennawar H P, Ning G, Du M Y, Bai L, Li X S, Zhang X. J. Am. Chem. Soc., 2018, 140(24): 7381.

doi: 10.1021/jacs.8b02176     pmid: 29883112
[175]
Oscar B G, Zhu L D, Wolfendeen H, Rozanov N D, Chang A, Stout K T, Sandwisch J W, Porter J J, Mehl R A, Fang C. Front. Mol. Biosci., 2020, 7: 131.

doi: 10.3389/fmolb.2020.00131     URL    
[176]
Shen B X, Qian Y. Dyes Pigments, 2019, 166: 350.

doi: 10.1016/j.dyepig.2019.03.034     URL    
[177]
Shen B X, Zhu W Y, Zhi X, Qian Y. Talanta, 2020, 208: 120461.
[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[4] 颜廷义, 张光耀, 喻琨, 李梦洁, 曲丽君, 张学记. 基于智能手机的即时检测[J]. 化学进展, 2022, 34(4): 884-897.
[5] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[6] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[9] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[10] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[11] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[12] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[13] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[14] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[15] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
阅读次数
全文


摘要

荧光探针在半胱氨酸检测的应用